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Chapter 6
Viscous Flow in Ducts

Motivation. This chapter is completely devoted to an important practical fl uids engi-
neering problem: fl ow in ducts with various velocities, various fl uids, and various duct 
shapes. Piping systems are encountered in almost every engineering design and thus 
have been studied extensively. There is a small amount of theory plus a large amount 
of experimentation.
 The basic piping problem is this: Given the pipe geometry and its added compo-
nents (such as fi ttings, valves, bends, and diffusers) plus the desired fl ow rate and 
fl uid properties, what pressure drop is needed to drive the fl ow? Of course, it may be 
stated in alternative form: Given the pressure drop available from a pump, what fl ow 
rate will ensue? The correlations discussed in this chapter are adequate to solve most 
such piping problems.
 This chapter is for incompressible fl ow; Chap. 9 treats compressible pipe fl ow.

6.1 Reynolds Number Regimes  Now that we have derived and studied the basic fl ow equations in Chap. 4, you would 
think that we could just whip off myriad beautiful solutions illustrating the full range 
of fl uid behavior, of course expressing all these educational results in dimensionless 
form, using our new tool from Chap. 5, dimensional analysis.
 The fact of the matter is that no general analysis of fl uid motion yet exists. There 
are several dozen known particular solutions, there are many approximate digital 
computer solutions, and there are a great many experimental data. There is a lot of 
theory available if we neglect such important effects as viscosity and compressibility 
(Chap. 8), but there is no general theory and there may never be. The reason is that 
a profound and vexing change in fl uid behavior occurs at moderate Reynolds numbers. 
The fl ow ceases being smooth and steady (laminar) and becomes fl uctuating and 
agitated (turbulent). The changeover is called transition to turbulence. In Fig. 5.3a 
we saw that transition on the cylinder and sphere occurred at about Re 5 3 3 105, 
where the sharp drop in the drag coeffi cient appeared. Transition depends on many 
effects, such as wall roughness (Fig. 5.3b) or fl uctuations in the inlet stream, but the 
primary parameter is the Reynolds number. There are a great many data on transition 
but only a small amount of theory [1 to 3].
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340 Chapter 6 Viscous Flow in Ducts

 Turbulence can be detected from a measurement by a small, sensitive instrument 
such as a hot-wire anemometer (Fig. 6.29e) or a piezoelectric pressure transducer. The 
fl ow will appear steady on average but will reveal rapid, random fl uctuations if turbu-
lence is present, as sketched in Fig. 6.1. If the fl ow is laminar, there may be occasional 
natural disturbances that damp out quickly (Fig. 6.1a). If transition is occurring, there 
will be sharp bursts of intermittent turbulent fl uctuation (Fig. 6.1b) as the increasing 
Reynolds number causes a breakdown or instability of laminar motion. At suffi ciently 
large Re, the fl ow will fl uctuate continually (Fig. 6.1c) and is termed fully turbulent. 
The fl uctuations, typically ranging from 1 to 20 percent of the average velocity, are 
not strictly periodic but are random and encompass a continuous range, or spectrum, 
of frequencies. In a typical wind tunnel fl ow at high Re, the turbulent frequency ranges 
from 1 to 10,000 Hz, and the wavelength ranges from about 0.01 to 400 cm.

EXAMPLE 6.1

The accepted transition Reynolds number for fl ow in a circular pipe is Red,crit < 2300. For 
fl ow through a 5-cm-diameter pipe, at what velocity will this occur at 208C for (a) airfl ow 
and (b) water fl ow?

Solution

Almost all pipe fl ow formulas are based on the average velocity V 5 Q/A, not centerline or 
any other point velocity. Thus transition is specifi ed at ρVd/μ < 2300. With d known, we 
introduce the appropriate fl uid properties at 208C from Tables A.3 and A.4:

(a) Air:  
ρVd

μ
5

(1.205 kg/m3)V(0.05 m)

1.80 E-5 kg/(m # s)
5 2300    or    V < 0.7 

m

s

(b) Water:  
ρVd

μ
5

(998 kg/m3)V(0.05 m)

0.001 kg/(m # s)
5 2300    or    V 5 0.046 

m

s

These are very low velocities, so most engineering air and water pipe fl ows are turbulent, 
not laminar. We might expect laminar duct fl ow with more viscous fl uids such as lubricating 
oils or glycerin.

 In free-surface fl ows, turbulence can be observed directly. Figure 6.2 shows liquid fl ow 
issuing from the open end of a tube. The low-Reynolds-number jet (Fig. 6.2a) is smooth 
and laminar, with the fast center motion and slower wall fl ow forming different  trajectories 

t

u

(a)
t

u

(b)
t

u

(c)

Small natural
disturbances
damp quickly

Intermittent
bursts of 
turbulence

Continuous
turbulence

Fig. 6.1 The three regimes of 
viscous fl ow: (a) laminar fl ow 
at low Re; (b) transition at 
intermediate Re; (c) turbulent 
fl ow at high Re.
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6.1  Reynolds Number Regimes 341

Fig. 6.2 Flow issuing at constant 
speed from a pipe: (a) high-
viscosity, low-Reynolds-number, 
laminar fl ow; (b) low-viscosity, 
high-Reynolds-number, turbulent 
fl ow. Note the ragged, disorderly 
shape of the jet. (National 
Committee for Fluid Mechanics 
Films, Education Development 
Center, Inc., © 1972.)



342 Chapter 6 Viscous Flow in Ducts

joined by a liquid sheet. The higher-Reynolds-number turbulent fl ow (Fig. 6.2b) is 
unsteady and irregular but, when averaged over time, is steady and predictable.
 How did turbulence form inside the pipe? The laminar parabolic fl ow profi le, which 
is similar to Eq. (4.137), became unstable and, at Red < 2300, began to form “slugs” 
or “puffs” of intense turbulence. A puff has a fast-moving front and a slow-moving 
rear and may be visualized by experimenting with glass tube fl ow. Figure 6.3 shows 
a puff as photographed by Bandyopadhyay [45]. Near the entrance (Fig. 6.3a and b) 
there is an irregular laminar–turbulent interface, and vortex roll-up is visible. Further 
downstream (Fig. 6.3c) the puff becomes fully turbulent and very active, with helical 
motions visible. Far downstream (Fig. 6.3d) the puff is cone-shaped and less active, 
with a fuzzy, ill-defi ned interface, sometimes called the “relaminarization” region.
 A complete description of the statistical aspects of turbulence is given in Ref. 1, while 
theory and data on transition effects are given in Refs. 2 and 3. At this introductory level 
we merely point out that the primary parameter affecting transition is the Reynolds 
number. If Re 5 UL/ν, where U is the average stream velocity and L is the “width,” or 
transverse thickness, of the shear layer, the following approximate ranges occur:

  0 , Re ,  1: highly viscous laminar “creeping” motion

  1 , Re , 100: laminar, strong Reynolds number dependence

100 , Re , 103: laminar, boundary layer theory useful

103 , Re , 104: transition to turbulence

104 , Re , 106: turbulent, moderate Reynolds number dependence

106 , Re ,  ` : turbulent, slight Reynolds number dependence

These representative ranges vary somewhat with fl ow geometry, surface roughness, 
and the level of fl uctuations in the inlet stream. The great majority of our analyses 
are concerned with laminar fl ow or with turbulent fl ow, and one should not normally 
design a fl ow operation in the transition region.

(a)

Flow

(b)

(c)

(d)

Fig. 6.3 Formation of a turbulent 
puff in pipe fl ow: (a) and (b) near the 
entrance; (c) somewhat downstream; 
(d) far downstream. (Courtesy of 
Cambridge University Press–P. R. 
Bandyopadhyay, “Aspects of the 
Equilibrium Puff in Transitional Pipe 
Flow,” Journal of Fluid Mechanics, 
vol. 163, 1986, pp. 439–458.)
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6.1  Reynolds Number Regimes 343

Historical Outline  Since turbulent fl ow is more prevalent than laminar fl ow, experimenters have observed 
turbulence for centuries without being aware of the details. Before 1930 fl ow instru-
ments were too insensitive to record rapid fl uctuations, and workers simply reported 
mean values of velocity, pressure, force, and so on. But turbulence can change 
the mean values dramatically, as with the sharp drop in drag coeffi cient in Fig. 5.3. 
A German engineer named G. H. L. Hagen fi rst reported in 1839 that there might be 
two regimes of viscous fl ow. He measured water fl ow in long brass pipes and deduced 
a pressure-drop law:

  ¢p 5 (const) 
LQ

R4 1 entrance effect (6.1)

This is exactly our laminar fl ow scaling law from Example 5.4, but Hagen did not 
realize that the constant was proportional to the fl uid viscosity.
 The formula broke down as Hagen increased Q beyond a certain limit—that is, 
past the critical Reynolds number—and he stated in his paper that there must be a 
second mode of fl ow characterized by “strong movements of water for which Dp 
varies as the second power of the discharge. . . .” He admitted that he could not clarify 
the reasons for the change.
 A typical example of Hagen’s data is shown in Fig. 6.4. The pressure drop varies 
linearly with V 5 Q/A up to about 1.1 ft/s, where there is a sharp change. Above about 
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Fig. 6.4 Experimental evidence of 
transition for water fl ow in a 1
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smooth pipe 10 ft long.



344 Chapter 6 Viscous Flow in Ducts

V 5 2.2 ft/s the pressure drop is nearly quadratic with V. The actual power 
Dp ~ V1.75 seems impossible on dimensional grounds but is easily explained when 
the dimensionless pipe fl ow data (Fig. 5.10) are displayed.
 In 1883 Osborne Reynolds, a British engineering professor, showed that the change 
depended on the parameter ρVd/μ, now named in his honor. By introducing a dye 
streak into a pipe fl ow, Reynolds could observe transition and turbulence. His sketches 
[4] of the fl ow behavior are shown in Fig. 6.5.
 If we examine Hagen’s data and compute the Reynolds number at V 5 1.1 ft/s, 
we obtain Red 5 2100. The fl ow became fully turbulent, V 5 2.2 ft/s, at Red 5 4200. 
The accepted design value for pipe fl ow transition is now taken to be

 Red,crit < 2300 (6.2)

This is accurate for commercial pipes (Fig. 6.13), although with special care in pro-
viding a rounded entrance, smooth walls, and a steady inlet stream, Red,crit can be 
delayed until much higher values. The study of transition in pipe fl ow, both experi-
mentally and theoretically, continues to be a fascinating topic for researchers, as 
discussed in a recent review article [55]. Note: The value of 2300 is for transition in 
pipes. Other geometries, such as plates, airfoils, cylinders, and spheres, have com-
pletely different transition Reynolds numbers.
 Transition also occurs in external fl ows around bodies such as the sphere and 
cylinder in Fig. 5.3. Ludwig Prandtl, a German engineering professor, showed in 1914 
that the thin boundary layer surrounding the body was undergoing transition from 
laminar to turbulent fl ow. Thereafter the force coeffi cient of a body was acknowledged 
to be a function of the Reynolds number [Eq. (5.2)].
 There are now extensive theories and experiments of laminar fl ow instability that 
explain why a fl ow changes to turbulence. Reference 5 is an advanced textbook on 
this subject.
 Laminar fl ow theory is now well developed, and many solutions are known [2, 3], 
but no analyses can simulate the fi ne-scale random fl uctuations of turbulent fl ow.1 
Therefore most turbulent fl ow theory is semiempirical, based on dimensional analysis 
and physical reasoning; it is concerned with the mean fl ow properties only and the 
mean of the fl uctuations, not their rapid variations. The turbulent fl ow “theory” pre-
sented here in Chaps. 6 and 7 is unbelievably crude yet surprisingly effective. We shall 
attempt a rational approach that places turbulent fl ow analysis on a fi rm physical basis.

6.2 Internal versus External 
Viscous Flows

 Both laminar and turbulent fl ow may be either internal (that is, “bounded” by walls) 
or external and unbounded. This chapter treats internal fl ows, and Chap. 7 studies 
external fl ows.
 An internal fl ow is constrained by the bounding walls, and the viscous effects will 
grow and meet and permeate the entire fl ow. Figure 6.6 shows an internal fl ow in a 
long duct. There is an entrance region where a nearly inviscid upstream fl ow con-
verges and enters the tube. Viscous boundary layers grow downstream, retarding the 

1However, direct numerical simulation (DNS) of low-Reynolds-number turbulence is now quite 
 common [32].

Needle

Tank

Dye filament

(a)

(b)

(c)

Fig. 6.5 Reynolds’ sketches of pipe 
fl ow transition: (a) low-speed, 
laminar fl ow; (b) high-speed, 
turbulent fl ow; (c) spark photograph 
of condition (b). 
Source: Reynolds, “An Experimental 
Investigation of the Circumstances 
which Determine Whether the Motion 
of Water Shall Be Direct or Sinuous 
and of the Law of Resistance in Parallel 
Channels,” Phil. Trans. R. Soc., 
vol. 174, 1883, pp. 935–982.
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6.2  Internal versus External Viscous Flows 345

axial fl ow u(r, x) at the wall and thereby accelerating the center core fl ow to maintain 
the incompressible continuity requirement

  Q 5 #u dA 5 const (6.3)

 At a fi nite distance from the entrance, the boundary layers merge and the inviscid 
core disappears. The tube fl ow is then entirely viscous, and the axial velocity adjusts 
slightly further until at x 5 Le it no longer changes with x and is said to be fully 
developed, u < u(r) only. Downstream of x 5 Le the velocity profi le is constant, the 
wall shear is constant, and the pressure drops linearly with x, for either laminar or 
turbulent fl ow. All these details are shown in Fig. 6.6.
 Dimensional analysis shows that the Reynolds number is the only parameter 
 affecting entrance length. If

Le 5 f (d, V, ρ, μ)    V 5
Q

A

then 
Le

d
5 gaρVd

μ
b 5 g(Red) (6.4)

For laminar fl ow [2, 3], the accepted correlation is

 
Le

d
< 0.06 Red    laminar (6.5)

Inviscid
core flow

0 Le
x

Entrance
pressure

drop

Linear
pressure
drop in

fully developed
flow region

Pressure

Entrance length Le
(developing profile region)

Growing
boundary

layers

Boundary
layers
merge

Developed
velocity

profile u(r)

u(r, x)

x

r

Fully developed
flow region

Fig. 6.6 Developing velocity 
profi les and pressure changes in 
the entrance of a duct fl ow.
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346 Chapter 6 Viscous Flow in Ducts

The maximum laminar entrance length, at Red,crit 5 2300, is Le 5 138d, which is the 
longest development length possible.
 In turbulent fl ow, the boundary layers grow faster, and Le is relatively shorter. For 
decades, the writer has favored a sixth-power-law estimate, Le/d < 4.4 Red

1/6, but 
recent CFD results, communicated by Fabien Anselmet, and separately by Sukanta 
Dash, indicate that a better turbulent entrance-length correlation is

 
Le

d
< 1.6 Red

1/4   for  Red #  107 (6.6)

Some computed turbulent entrance-length estimates are thus

Red 4000 104 105 106 107

Le/d 13 16 28 51 90

Now 90 diameters may seem “long,” but typical pipe fl ow applications involve an 
L/d value of 1000 or more, in which case the entrance effect may be neglected and 
a simple analysis made for fully developed fl ow. This is possible for both laminar 
and turbulent fl ows, including rough walls and noncircular cross sections.

EXAMPLE 6.2

A 1
2-in-diameter water pipe is 60 ft long and delivers water at 5 gal/min at 208C. What 

fraction of this pipe is taken up by the entrance region?

Solution

Convert

Q 5 (5 gal/min) 
0.00223 ft3/s

1 gal/min
5 0.0111 ft3/s

The average velocity is

V 5
Q

A
5

0.0111 ft3/s

(π/4) 3 (1
2 /12) ft 4 2 5 8.17 ft/s

From Table 1.4 read for water ν 5 1.01 3 1026 m2/s 5 1.09 3 1025 ft2/s. Then the pipe 
Reynolds number is

Red 5
Vd

ν
5

(8.17 ft/s) 3 (1
2 /12) ft 4

1.09 3 1025 ft2/s
5 31,300

This is greater than 4000; hence the fl ow is fully turbulent, and Eq. (6.6) applies for entrance 
length:

Le

d
< 1.6 Red

1/4 5 (1.6)(31,300)1/4 5 21

The actual pipe has L/d 5 (60 ft)/[(1
2/12)ft] 5 1440. Hence the entrance region takes up the 

fraction

 
Le

L
5

21

1440
5 0.015 5 1.5%  Ans.

This is a very small percentage, so we can reasonably treat this pipe fl ow as essentially 
fully developed.

Highlight

Highlight

Highlight



6.3  Head Loss—The Friction Factor 347

 Shortness can be a virtue in duct fl ow if one wishes to maintain the inviscid core. 
For example, a “long” wind tunnel would be ridiculous, since the viscous core would 
invalidate the purpose of simulating free-fl ight conditions. A typical laboratory low-
speed wind tunnel test section is 1 m in diameter and 5 m long, with V 5 30 m/s. If 
we take νair 5 1.51 3 1025 m2/s from Table 1.4, then Red 5 1.99 3 106 and, from 
Eq. (6.6), Le/d < 49. The test section has L/d 5 5, which is much shorter than the 
development length. At the end of the section the wall boundary layers are only 10 cm 
thick, leaving 80 cm of inviscid core suitable for model testing.
 An external fl ow has no restraining walls and is free to expand no matter how 
thick the viscous layers on the immersed body may become. Thus, far from the body 
the fl ow is nearly inviscid, and our analytical technique, treated in Chap. 7, is to patch 
an inviscid-fl ow solution onto a viscous boundary-layer solution computed for the 
wall region. There is no external equivalent of fully developed internal fl ow.

6.3 Head Loss—The Friction 
Factor

 When applying pipe fl ow formulas to practical problems, it is customary to use a 
control volume analysis. Consider incompressible steady fl ow between sections 1 and 
2 of the inclined constant-area pipe in Fig. 6.7. The one-dimensional continuity 
 relation, Eq. (3.30), reduces to

Q1 5 Q2 5 const  or  V1 5 V2 5 V

since the pipe is of constant area. The steady fl ow energy equation (3.75) becomes

 a p

ρg
1 α 

V2

2g
1 zb

1
5 a p

ρg
1 α 

V2

2g
1 zb

2
1 hf  (6.7)

2

u(r)

r

r = R

1

x
2  – x

1  = L

 p2

x

Z2

p1 = p2 + Δp
gx = g sin ϕ

g

ϕ

ϕ

Z1

w
τ 

τ(r) 

Fig. 6.7 Control volume, just inside 
the pipe wall, of steady, fully 
developed fl ow between two 
sections in an inclined pipe.
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348 Chapter 6 Viscous Flow in Ducts

since there is no pump or turbine between 1 and 2. For fully developed fl ow, the 
velocity profi le shape is the same at sections 1 and 2. Thus α1 5 α2 and, since 
V1 5 V2, Eq. (6.7) reduces to head loss versus pressure drop and elevation change:

hf 5 (z1 2 z2) 1 a p1

ρg
2

p2

ρg
b 5 ¢z 1

¢p

ρg
 (6.8)

The pipe head loss equals the change in the sum of pressure and gravity head—that 
is, the change in height of the hydraulic grade line (HGL).
 Finally, apply the momentum relation (3.40) to the control volume in Fig. 6.7, 
accounting for applied x-directed forces due to pressure, gravity, and shear:

a Fx 5 ¢p (πR2) 1 ρg(πR2)L sin ϕ 2 τw(2πR)L 5 m
#
(V2 2 V1) 5 0 (6.9a)

Rearrange this and we fi nd that the head loss is also related to wall shear stress:

¢z 1
¢p

ρg
5 hf 5

2τw

ρg
 
L

R
5

4τw

ρg
 
L

d
 (6.9b)

where we have substituted Dz 5 L sin ϕ from the geometry of Fig. 6.7. Note that, 
regardless of whether the pipe is horizontal or tilted, the head loss is proportional to 
the wall shear stress.
 How should we correlate the head loss for pipe fl ow problems? The answer was 
given a century and a half ago by Julius Weisbach, a German professor who in 1850 
published the fi rst modern textbook on hydrodynamics. Equation (6.9b) shows that hf

is proportional to (L/d), and data such as Hagen’s in Fig. 6.6 show that, for turbulent 
fl ow, hf is approximately proportional to V2. The proposed correlation, still as effective 
today as in 1850, is

hf 5 f 
L

d
 
V2

2g
  where  f 5 fcn(Red, 

ε

d
, duct shape)  (6.10)

The dimensionless parameter f is called the Darcy friction factor, after Henry Darcy 
(1803–1858), a French engineer whose pipe fl ow experiments in 1857 fi rst established 
the effect of roughness on pipe resistance. The quantity ε is the wall roughness height, 
which is important in turbulent (but not laminar) pipe fl ow. We added the “duct 
shape” effect in Eq. (6.10) to remind us that square and triangular and other noncir-
cular ducts have a somewhat different friction factor than a circular pipe. Actual data 
and theory for friction factors will be discussed in the sections that follow.
 By equating Eqs. (6.9) and (6.10) we fi nd an alternative form for friction factor:

f 5
8τw

ρV2 (6.11)

For noncircular ducts, we must interpret τw to be an average value around the duct 
perimeter. For this reason Eq. (6.10) is preferred as a unifi ed defi nition of the Darcy 
friction factor.
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6.4  Laminar Fully Developed Pipe Flow 349

6.4 Laminar Fully Developed 
Pipe Flow

 Analytical solutions can be readily derived for laminar fl ows, either circular or non-
circular. Consider fully developed Poiseuille fl ow in a round pipe of diameter d, radius 
R. Complete analytical results were given in Sec. 4.10. Let us review those formulas 
here:

u 5 umax a1 2
r2

R2b  where  umax 5 a2
dp

dx
b 

R2

4μ
  and  a2

dp

dx
b 5 a¢p 1 ρg¢z

L
b

 V 5
Q

A
5

umax

2
5 a¢p 1 ρg¢z

L
b 

R2

8μ

 Q 5 #udA 5 πR2V 5
πR4

8μ
 a¢p 1 ρg¢z

L
b (6.12)

τw 5 0μ 
du

dr
0 r5R 5

4μV

R
5

8μV

d
5

R

2
 a¢p 1 ρg¢z

L
b

hf 5
32μLV

ρgd2 5
128μLQ

πρgd 
4

The paraboloid velocity profi le has an average velocity V which is one-half of the 
maximum velocity. The quantity Dp is the pressure drop in a pipe of length L; that 
is, (dp/dx) is negative. These formulas are valid whenever the pipe Reynolds number, 
Red 5 ρVd/μ, is less than about 2300. Note that τw is proportional to V (see Fig. 6.6) 
and is independent of density because the fl uid acceleration is zero. Neither of these 
is true in turbulent fl ow.
 With wall shear stress known, the Poiseuille fl ow friction factor is easily 
determined:

 flam 5
8τw,lam

ρV2 5
8(8μV/d)

ρV2 5
64

ρVd/μ
5

64

Red
 (6.13)

In laminar fl ow, the pipe friction factor decreases inversely with Reynolds number. 
This famous formula is effective, but often the algebraic relations of Eqs. (6.12) are 
more direct for problems.

EXAMPLE 6.3

An oil with ρ 5 900 kg/m3 and ν 5 0.0002 m2/s fl ows upward through an inclined pipe 
as shown in Fig. E6.3. The pressure and elevation are known at sections 1 and 2, 10 m 
apart. Assuming steady laminar fl ow, (a) verify that the fl ow is up, (b) compute hf between 
1 and 2, and compute (c) Q, (d) V, and (e) Red. Is the fl ow really laminar?

Solution

Part (a) For later use, calculate

 μ 5 ρν 5 (900 kg/m3)(0.0002 m2/s) 5 0.18 kg/(m # s)

 z2 5 ¢L sin 40° 5 (10 m)(0.643) 5 6.43 m
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350 Chapter 6 Viscous Flow in Ducts

E6.3 

10 m
Q,V

d = 6 cm

p2 = 250,000 Pa

p1 = 350,000 Pa, z1 = 0

1

2

40°

The fl ow goes in the direction of falling HGL; therefore, compute the hydraulic grade-line 
height at each section:

 HGL1 5 z1 1
p1

ρg
5 0 1

350,000

900(9.807)
5 39.65 m

HGL2 5 z2 1
p2

ρg
5 6.43 1

250,000

900(9.807)
5 34.75 m

The HGL is lower at section 2; hence the fl ow is up from 1 to 2 as assumed. Ans. (a)

Part (b) The head loss is the change in HGL:

 hf 5 HGL1 2 HGL2 5 39.65 m 2 34.75 m 5 4.9 m Ans. (b)

Half the length of the pipe is quite a large head loss.

Part (c) We can compute Q from the various laminar fl ow formulas, notably Eq. (6.12):

 Q 5
πρgd 4hf

128μL
5

π(900)(9.807)(0.06)4(4.9)

128(0.18)(10)
5 0.0076 m3/s Ans. (c)

Part (d) Divide Q by the pipe area to get the average velocity:

 V 5
Q

πR2 5
0.0076

π(0.03)2 5 2.7 m/s Ans. (d )

Part (e) With V known, the Reynolds number is

 Red 5
Vd

ν
5

2.7(0.06)

0.0002
5 810 Ans. (e)

This is well below the transition value Red 5 2300, so we are fairly certain the fl ow is laminar.
 Notice that by sticking entirely to consistent SI units (meters, seconds, kilograms, new-
tons) for all variables we avoid the need for any conversion factors in the calculations.
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EXAMPLE 6.4

A liquid of specifi c weight ρg 5 58 lbf/ft
3 fl ows by gravity through a 1-ft tank and a 1-ft 

capillary tube at a rate of 0.15 ft3/h, as shown in Fig. E6.4. Sections 1 and 2 are at atmo-
spheric pressure. Neglecting entrance effects and friction in the large tank, compute the 
viscosity of the liquid.

Solution

• System sketch: Figure E6.4 shows L 5 1 ft, d 5 0.004 ft, and Q 5 0.15 ft3/h.
• Assumptions: Laminar, fully developed, incompressible (Poiseuille) pipe fl ow. Atmo-

spheric pressure at sections 1 and 2. Negligible velocity at surface, V1 < 0.
• Approach: Use continuity and energy to fi nd the head loss and thence the viscosity.
• Property values: Given ρg 5 58 lbf/ft3, fi gure out ρ 5 58/32.2 5 1.80 slug/ft3 if needed.
• Solution step 1: From continuity and the known fl ow rate, determine V2:

V2 5
Q

A2
5

Q

(π/4)d2 5
(0.15/3600)ft3/s

(π/4)(0.004 ft)2 5 3.32 ft/s

Write the energy equation between 1 and 2, canceling terms, and fi nd the head loss:

p1

ρg
1

α1V1
2

2g
1 z1 5

p2

ρg
1

α2V2
2

2g
1 z2 1 hf

or hf 5 z1 2 z2 2
α2V2

2

2g
5 2.0 ft 2 0 ft 2

(2.0)(3.32 ft/s)2

2(32.2 ft/s2)
5 1.66 ft

• Comment: We introduced α2 5 2.0 for laminar pipe fl ow from Eq. (3.76). If we forgot 
α2, we would have calculated hf 5 1.83 ft, a 10 percent error.

• Solution step 2: With head loss known, the viscosity follows from the laminar formula 
in Eqs. (6.12):

 hf 5 1.66 ft 5
32 μLV

(ρg)d2 5
32μ(1.0 ft) (3.32 ft/s)

(58 lbf/ft3) (0.004 ft)2 solve for μ 5 1.45 E-5 
slug

ft-s
 Ans.

• Comments: We didn’t need the value of ρ—the formula contains ρg, but who knew? 
Note also that L in this formula is the pipe length of 1 ft, not the total elevation change.

• Final check: Calculate the Reynolds number to see if it is less than 2300 for laminar fl ow:

Red 5
ρVd

μ
5

(1.80 slug/ft3) (3.32 ft/s) (0.004 ft)

(1.45 E-5 slug/ft-s)
< 1650  Yes, laminar.

• Comments: So we did need ρ after all to calculate Red.
• Unexpected comment: For this head loss, there is a second (turbulent) solution, as we shall 

see in Example 6.8.

6.5 Turbulence Modeling  Throughout this chapter we assume constant density and viscosity and no thermal 
interaction, so that only the continuity and momentum equations are to be solved for 
velocity and pressure

Continuity: 
0u
0x

1
0υ
0y

1
0w
0z

5 0

Momentum: ρ 
dV
dt

5 2§p 1 ρg 1 μ §2V 

(6.14)

1

2

d = 0.004 ft

Q = 0.15 ft3/   h

1 ft

1 ft

E6.4
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subject to no slip at the walls and known inlet and exit conditions. (We shall save 
our free-surface solutions for Chap. 10.)
 We will not work with the differential energy relation, Eq. (4.53), in this chapter, 
but it is very important, both for heat transfer calculations and for general understand-
ing of duct fl ow processes. There is work being done by pressure forces to drive the 
fl uid through the duct. Where does this energy go? There is no work done by the wall 
shear stresses, because the velocity at the wall is zero. The answer is that pressure 
work is balanced by viscous dissipation in the interior of the fl ow. The integral of 
the  dissipation function F, from Eq. (4.50), over the fl ow fi eld will equal the pres-
sure work. An example of this fundamental viscous fl ow energy balance is given in 
Problem C6.7.
 Both laminar and turbulent fl ows satisfy Eqs. (6.14). For laminar fl ow, where there 
are no random fl uctuations, we go right to the attack and solve them for a variety of 
geometries [2, 3], leaving many more, of course, for the problems.

Reynolds’ Time-Averaging 
Concept

 For turbulent fl ow, because of the fl uctuations, every velocity and pressure term in 
Eqs. (6.14) is a rapidly varying random function of time and space. At present our 
mathematics cannot handle such instantaneous fl uctuating variables. No single pair of 
random functions V(x, y, z, t) and p(x, y, z, t) is known to be a solution to Eqs. (6.14). 
Moreover, our attention as engineers is toward the average or mean values of velocity, 
pressure, shear stress, and the like in a high-Reynolds-number (turbulent) fl ow. This 
approach led Osborne Reynolds in 1895 to rewrite Eqs. (6.14) in terms of mean or 
time-averaged turbulent variables.
 The time mean u of a turbulent function u(x, y, z, t) is defi ned by

 u 5
1

T #
T

0
u dt (6.15)

where T is an averaging period taken to be longer than any signifi cant period of the 
fl uctuations themselves. The mean values of turbulent velocity and pressure are illus-
trated in Fig. 6.8. For turbulent gas and water fl ows, an averaging period T < 5 s is 
usually quite adequate.

t

u

(a)

t

p

(b)

u'

 u 

u = u + u'

p'

p = p + p'

 p 

Fig. 6.8 Defi nition of mean and 
fl uctuating turbulent variables: 
(a) velocity; (b) pressure.
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 The fl uctuation u9 is defi ned as the deviation of u from its average value

u¿ 5 u 2 u (6.16)

also shown in Fig. 6.8. It follows by defi nition that a fl uctuation has zero mean value:

u¿ 5
1

T
 #

T

0
(u 2 u) dt 5 u 2 u 5 0 (6.17)

However, the mean square of a fl uctuation is not zero and is a measure of the inten-
sity of the turbulence:

u¿2 5
1

T
 #

T

0
u¿2 dt ? 0 (6.18)

Nor in general are the mean fl uctuation products such as u¿υ¿  and u¿p¿  zero in a 
typical turbulent fl ow.
 Reynolds’ idea was to split each property into mean plus fl uctuating variables:

u 5 u 1 u¿  υ 5 υ 1 υ¿  w 5 w 1 w¿  p 5 p 1 p¿  (6.19)

Substitute these into Eqs. (6.14), and take the time mean of each equation. The 
 continuity relation reduces to

0u
0x

1
0υ
0y

1
0w
0z

5 0 (6.20)

which is no different from a laminar continuity relation.
 However, each component of the momentum equation (6.14b), after time averag-
ing, will contain mean values plus three mean products, or correlations, of fl uctuating 
velocities. The most important of these is the momentum relation in the mainstream, 
or x, direction, which takes the form

ρ 
d  u

dt
5 2

0p
0x

1 ρgx 1
0
0x

 aμ
0u
0x

2 ρu¿2b
1

0
0y

 aμ
0u
0y

2 ρu¿υ¿b 1
0
0z

 aμ
0u
0z

2 ρu¿w¿b 

(6.21)

The three correlation terms 2ρu¿2, 2ρu¿υ¿, and 2ρu¿w¿  are called turbulent stresses
because they have the same dimensions and occur right alongside the newtonian 
(laminar) stress terms μ(0u/0x) and so on.
 The turbulent stresses are unknown a priori and must be related by experiment to 
geometry and fl ow conditions, as detailed in Refs. 1 to 3. Fortunately, in duct and 
boundary layer fl ow, the stress 2ρu¿υ¿, associated with direction y normal to the wall 
is dominant, and we can approximate with excellent accuracy a simpler streamwise 
momentum equation

ρ
d u

dt
< 2

0p
0x

1 ρgx 1
0τ
0y

 (6.22)

where τ 5 μ
0u
0y

2 ρu¿υ¿ 5 τlam 1 τturb (6.23)
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Figure 6.9 shows the distribution of τlam and τturb from typical measurements across 
a turbulent shear layer near a wall. Laminar shear is dominant near the wall (the wall 
layer), and turbulent shear dominates in the outer layer. There is an intermediate 
region, called the overlap layer, where both laminar and turbulent shear are important. 
These three regions are labeled in Fig. 6.9.
 In the outer layer τturb is two or three orders of magnitude greater than τlam, and 
vice versa in the wall layer. These experimental facts enable us to use a crude but 
very effective model for the velocity distribution u(y) across a turbulent wall layer.

The Logarithmic Overlap Law  We have seen in Fig. 6.9 that there are three regions in turbulent fl ow near a wall:

1. Wall layer: Viscous shear dominates.

2. Outer layer: Turbulent shear dominates.

3. Overlap layer: Both types of shear are important.

From now on let us agree to drop the overbar from velocity u. Let τw be the wall 
shear stress, and let δ and U represent the thickness and velocity at the edge of the 
outer layer, y 5 δ.
 For the wall layer, Prandtl deduced in 1930 that u must be independent of the shear 
layer thickness:

 u 5 f (μ, τw, ρ, y) (6.24)

By dimensional analysis, this is equivalent to

 u1 5
u

u*
5 F ayu*

ν
b    u* 5 aτw

ρ
b1/2

 (6.25)

Equation (6.25) is called the law of the wall, and the quantity u* is termed the friction 
velocity because it has dimensions {LT 21}, although it is not actually a fl ow velocity.
 Subsequently, Kármán in 1933 deduced that u in the outer layer is independent of 
molecular viscosity, but its deviation from the stream velocity U must depend on the 
layer thickness δ and the other properties:

 (U 2 u)outer 5 g(δ, τw, ρ, y) (6.26)

y

y =    (x)

(x, y)

turb

lam

(a) (b)

Viscous wall layer

Overlap layer

Outer
turbulent

layer

w(x) 0

y

U(x)

u(x, y)

δ

τ

τ

τ

τ
Fig. 6.9 Typical velocity and shear 
distributions in turbulent fl ow near a 
wall: (a) shear; (b) velocity.
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Again, by dimensional analysis we rewrite this as

U 2 u

u*
5 G ay

δ
b (6.27)

where u* has the same meaning as in Eq. (6.25). Equation (6.27) is called the 
velocity-defect law for the outer layer.
 Both the wall law (6.25) and the defect law (6.27) are found to be accurate for a 
wide variety of experimental turbulent duct and boundary layer fl ows [Refs. 1 to 3]. 
They are different in form, yet they must overlap smoothly in the intermediate layer. 
In 1937 C. B. Millikan showed that this can be true only if the overlap layer velocity 
varies logarithmically with y:

u

u*
5

1
κ

 ln 
yu*
v

1 B  overlap layer  (6.28)

Over the full range of turbulent smooth wall fl ows, the dimensionless constants κ and 
B are found to have the approximate values κ < 0.41 and B < 5.0. Equation (6.28) 
is called the logarithmic overlap layer.
 Thus by dimensional reasoning and physical insight we infer that a plot of u versus 
ln y in a turbulent shear layer will show a curved wall region, a curved outer region, 
and a straight-line logarithmic overlap. Figure 6.10 shows that this is exactly the case. 
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Eq. (6.29)

Logarithmic
overlap

Eq. (6.28)
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Fig. 6.10 Experimental verifi cation 
of the inner, outer, and overlap layer 
laws relating velocity profi les in 
turbulent wall fl ow.
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The four outer-law profi les shown all merge smoothly with the logarithmic overlap 
law but have different magnitudes because they vary in external pressure gradient. 
The wall law is unique and follows the linear viscous relation

 u1 5
u

u*
5

yu*

ν
5 y1  (6.29)

from the wall to about y1 5 5, thereafter curving over to merge with the logarithmic 
law at about y1 5 30.
 Believe it or not, Fig. 6.10, which is nothing more than a shrewd correlation of 
velocity profi les, is the basis for most existing “theory” of turbulent shear fl ows. 
Notice that we have not solved any equations at all but have merely expressed the 
streamwise velocity in a neat form.
 There is serendipity in Fig. 6.10: The logarithmic law (6.28), instead of just being 
a short overlapping link, actually approximates nearly the entire velocity profi le, 
except for the outer law when the pressure is increasing strongly downstream (as in 
a diffuser). The inner wall law typically extends over less than 2 percent of the profi le 
and can be neglected. Thus we can use Eq. (6.28) as an excellent approximation to 
solve nearly every turbulent fl ow problem presented in this and the next chapter. Many 
additional applications are given in Refs. 2 and 3.

Advanced Modeling Concepts  Turbulence modeling is a very active fi eld. Scores of papers have been published to 
more accurately simulate the turbulent stresses in Eq. (6.21) and their y and z com-
ponents. This research, now available in advanced texts [1, 13, 19], goes well beyond 
the present book, which is confi ned to the use of the logarithmic law (6.28) for pipe 
and boundary layer problems. For example, L. Prandtl, who invented boundary layer 
theory in 1904, later proposed an eddy viscosity model of the Reynolds stress term 
in Eq. (6.23):

 2ρ u¿v¿ 5 τturb < μt 
du

dy
    where    μt < ρ l

2 0 du

dy
0  (6.30)

The term μt, which is a property of the fl ow, not the fl uid, is called the eddy viscos-
ity and can be modeled in various ways. The most popular form is Eq. (6.30), where 
l is called the mixing length of the turbulent eddies (analogous to mean free path in 
molecular theory). Near a solid wall, l is approximately proportional to distance from 
the wall, and Kármán suggested

 l < κy  where  κ 5 Kármán’s constant < 0.41 (6.31)

As a homework assignment, Prob. P6.40, you may show that Eqs. (6.30) and (6.31) 
lead to the logarithmic law (6.28) near a wall.
 Modern turbulence models approximate three-dimensional turbulent fl ows and 
employ additional partial differential equations for such quantities as the turbulence 
kinetic energy, the turbulent dissipation, and the six Reynolds stresses. For details, 
see Refs. 1, 13, and 19.

Highlight
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EXAMPLE 6.5

Air at 208C fl ows through a 14-cm-diameter tube under fully developed conditions. The 
centerline velocity is u0 5 5 m/s. Estimate from Fig. 6.10 (a) the friction velocity u* and 
(b) the wall shear stress τw.

Solution

• System sketch: Figure E6.5 shows turbulent pipe fl ow with u0 5 5 m/s and R 5 7 cm.
• Assumptions: Figure 6.10 shows that the logarithmic law, Eq. (6.28), is reasonable all 

the way to the center of the tube.
• Approach: Use Eq. (6.28) to estimate the unknown friction velocity u*.
• Property values: For air at 208C, ρ 5 1.205 kg/m3 and ν 5 1.51 E-5 m2/s.
• Solution step: Insert all the given data into Eq. (6.28) at y 5 R (the centerline). The 

only unknown is u*:

u0

u*
5

1

κ
 ln aRu*

v
b 1 B  or  

5.0 m/s

u*
5

1

0.41
 ln c (0.07 m)u*

1.51 E-5 m2/s
d 1 5

Although the logarithm makes it awkward, one can solve this either by hand or by Excel 
 iteration. There is an automatic iteration procedure in Excel—File, Excel Options, Formulas, 
Enable iterative calculation—but here we simply show how to iterate by repeat calcula-
tions, copied and pasted downward. For a single unknown, in this case u*, we only need two 
columns, one for the unknown and one for the equation. The writer hopes that the following 
copy-and-iterate procedure is clear:

 A B

 Here place the fi rst guess for u*: Here place the equation that solves for u*:
1 1.0 5(5.0/(1/0.41*ln(0.07*a1/1.51E-5)+5))
2 5B1 (the number, not the equation) Copy B1 equation and place here
3 Copy A2 here Copy B2 here
4 Keep copying down… Keep copying down until convergence

Note that B2 uses the cell location for u*, A1, not the notation u*. Here are the actual 
numbers, not instructions or equations, for this problem:

 A B

1.0000 0.1954

0.1954 0.2314

0.2314 0.2271

0.2271 0.2275
0.2275 0.2275

The solution for u* has converged to 0.2275. To three decimal places,

 u* < 0.228 m/s  Ans. (a)

 τw 5 ρu*2 5 (1.205)(0.228)2 < 0.062 Pa Ans. (b)

• Comments: The logarithmic law solved everything! This is a powerful technique, using 
an experimental velocity correlation to approximate general turbulent fl ows. You may 
check that the Reynolds number Red is about 40,000, defi nitely turbulent fl ow.

E6.5

u (  y)

y = R

y
r

r = R = 7 cm

u0 = 5 m    /s
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6.6 Turbulent Pipe Flow  For turbulent pipe fl ow we need not solve a differential equation but instead proceed 
with the logarithmic law, as in Example 6.5. Assume that Eq. (6.28) correlates the 
local mean velocity u(r) all the way across the pipe

 
u(r)

u*
<

1
κ

 ln 
(R 2 r)u*

ν
1 B (6.32)

where we have replaced y with R 2 r. Compute the average velocity from this profi le:

 V 5
Q

A
5

1

πR2 #
R

0
u* c 1

κ
 ln 

(R 2 r)u*

ν
1 B d2πr dr

  5
1

2
 u*a2

κ
 ln 

Ru*
ν

1 2B 2
3
κ
b (6.33)

Introducing κ 5 0.41 and B 5 5.0, we obtain, numerically,

 
V

u*
< 2.44 ln 

Ru*
ν

1 1.34 (6.34)

This looks only marginally interesting until we realize that V/u* is directly related to 
the Darcy friction factor:

 
V

u*
5 aρV2

τw
b1/2

5 a8

f
b1/2

 (6.35)

Moreover, the argument of the logarithm in (6.34) is equivalent to

 
Ru*

ν
5

1
2Vd

ν
 
u*

V
5

1

2
 Red a f

8
b1/2

 (6.36)

Introducing (6.35) and (6.36) into Eq. (6.34), changing to a base-10 logarithm, and 
rearranging, we obtain

 
1

f 1/2 < 1.99 log (Red  f 
1/2) 2 1.02 (6.37)

In other words, by simply computing the mean velocity from the logarithmic law 
correlation, we obtain a relation between the friction factor and Reynolds number for 
turbulent pipe fl ow. Prandtl derived Eq. (6.37) in 1935 and then adjusted the constants 
slightly to fi t friction data better:

 
1

f 1/2 5 2.0 log (Red  f 
1/2) 2 0.8 (6.38)

This is the accepted formula for a smooth-walled pipe. Some numerical values may 
be listed as follows:

Red 4000 104 105 106 107 108

f 0.0399 0.0309 0.0180 0.0116 0.0081 0.0059

Thus f drops by only a factor of 5 over a 10,000-fold increase in Reynolds number. 
Equation (6.38) is cumbersome to solve if Red is known and f is wanted. There are 
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many alternative approximations in the literature from which f can be computed 
explicitly from Red:

 
f 5 • 0.316 Re21/4

d    4000 , Red , 105 H. Blasius (1911)a1.8 log 
Red

6.9
b22

Ref. 9, Colebrook

 (6.39)

However, Eq. (6.38) the preferred formula, is easily solved by computer iteration.
 Blasius, a student of Prandtl, presented his formula in the fi rst correlation ever 
made of pipe friction versus Reynolds number. Although his formula has a limited 
range, it illustrates what was happening in Fig. 6.4 to Hagen’s 1839 pressure-drop 
data. For a horizontal pipe, from Eq. (6.39),

hf 5
¢p

ρg
5 f  

L

d
 
V2

2g
< 0.316 a μ

ρVd
b1/4L

d
 
V2

2g

or ¢p < 0.158 Lρ3/4μ1/4d25/4V7/4 (6.40)

at low turbulent Reynolds numbers. This explains why Hagen’s data for pressure drop 
begin to increase as the 1.75 power of the velocity, in Fig. 6.4. Note that Dp varies 
only slightly with viscosity, which is characteristic of turbulent fl ow. Introducing 
Q 5 1

4πd2V  into Eq. (6.40), we obtain the alternative form

 ¢p < 0.241Lρ3/4μ1/4d24.75Q1.75 (6.41)

For a given fl ow rate Q, the turbulent pressure drop decreases with diameter even 
more sharply than the laminar formula (6.12). Thus the quickest way to reduce 
required pumping pressure is to increase the pipe size, although, of course, the larger 
pipe is more expensive. Doubling the pipe size decreases Dp by a factor of about 27 
for a given Q. Compare Eq. (6.40) with Example 5.7 and Fig. 5.10.
 The maximum velocity in turbulent pipe fl ow is given by Eq. (6.32), evaluated at 
r 5 0:

 
umax

u*
<

1
κ

 ln 
Ru*

ν
1 B (6.42)

Combining this with Eq. (6.33), we obtain the formula relating mean velocity to 
maximum velocity:

 
V

umax
< (1 1 1.31f )21 (6.43)

Some numerical values are

Red 4000 104 105 106 107 108

V/umax 0.794 0.814 0.852 0.877 0.895 0.909

The ratio varies with the Reynolds number and is much larger than the value of 0.5 
predicted for all laminar pipe fl ow in Eq. (6.12). Thus a turbulent velocity profi le, as 
shown in Fig. 6.11b, is very fl at in the center and drops off sharply to zero at the 
wall.
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Effect of Rough Walls  It was not known until experiments in 1800 by Coulomb [6] that surface roughness 
has an effect on friction resistance. It turns out that the effect is negligible for laminar 
pipe fl ow, and all the laminar formulas derived in this section are valid for rough 
walls also. But turbulent fl ow is strongly affected by roughness. In Fig. 6.10 the linear 
viscous sublayer extends out only to y1 5 yu*/ν 5 5. Thus, compared with the 
diameter, the sublayer thickness ys is only

 
ys

d
5

5ν/u*

d
5

14.1

Red f
1/2 (6.44)

For example, at Red 5 105, f 5 0.0180, and ys/d 5 0.001, a wall roughness of about 
0.001d will break up the sublayer and profoundly change the wall law in Fig. 6.10.
 Measurements of u(y) in turbulent rough-wall fl ow by Prandtl’s student Nikuradse 
[7] show, as in Fig. 6.12a, that a roughness height ε will force the logarithm law 
profi le outward on the abscissa by an amount approximately equal to ln ε1, where 
ε1 5 εu*/ν. The slope of the logarithm law remains the same, 1/κ, but the shift 
outward causes the constant B to be less by an amount DB < (1/κ) ln ε1.
 Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner 
walls of the pipes. He then measured the pressure drops and fl ow rates and correlated 
friction factor versus Reynolds number in Fig. 6.12b. We see that laminar friction is 
unaffected, but turbulent friction, after an onset point, increases monotonically with 
the roughness ratio ε/d. For any given ε/d, the friction factor becomes constant 
(fully rough) at high Reynolds numbers. These points of change are certain values of 
ε1 5 εu*/ν:

 
εu*

ν
, 5: hydraulically smooth walls, no effect of roughness on friction

 5 #
εu*

ν
# 70: transitional roughness, moderate Reynolds number effect

 
εu*

ν
. 70:  fully rough fl ow, sublayer totally broken up and friction 

independent of Reynolds number

umax

V

(a)

(b)

V
umax

Parabolic
curve

Fig. 6.11 Comparison of laminar 
and turbulent pipe fl ow velocity 
profi les for the same volume fl ow: 
(a) laminar fl ow; (b) turbulent fl ow.
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For fully rough fl ow, ε1 . 70, the log law downshift DB in Fig. 6.12a is

 ¢B <
1
κ

 ln ε1 2 3.5 (6.45)

and the logarithm law modifi ed for roughness becomes

 u1 5
1
κ

 ln y1 1 B 2 ¢B 5
1
κ

 ln 
y

ε
1 8.5 (6.46)

The viscosity vanishes, and hence fully rough fl ow is independent of the Reynolds 
number. If we integrate Eq. (6.46) to obtain the average velocity in the pipe, we obtain

 
V

u*
5 2.44 ln 

d

ε
1 3.2

or 
1

f1/2 5 22.0 log 
ε/d

3.7
    fully rough fl ow (6.47)

There is no Reynolds number effect; hence the head loss varies exactly as the square 
of the velocity in this case. Some numerical values of friction factor may be listed:

ε/d 0.00001 0.0001 0.001 0.01 0.05

f 0.00806 0.0120 0.0196 0.0379 0.0716

0.08
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0.02

0.01
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103
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f

Eq. (6.39a)
Eq. (6.38)

= 0.0333
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0.00099
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d

Fig. 6.12 Effect of wall roughness on turbulent pipe fl ow. (a) The logarithmic overlap velocity 
profi le shifts down and to the right; (b) experiments with sand-grain roughness by Nikuradse [7] 
show a systematic increase of the turbulent friction factor with the roughness ratio.
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The friction factor increases by 9 times as the roughness increases by a factor of 5000. 
In the transitional roughness region, sand grains behave somewhat differently from 
commercially rough pipes, so Fig. 6.12b has now been replaced by the Moody chart.

The Moody Chart  In 1939 to cover the transitionally rough range, Colebrook [9] combined the smooth wall 
[Eq. (6.38)] and fully rough [Eq. (6.47)] relations into a clever interpolation formula:

1

f1/2 5 22.0 log aε/d

3.7
1

2.51

Red f1/2b  (6.48)

This is the accepted design formula for turbulent friction. It was plotted in 1944 by 
Moody [8] into what is now called the Moody chart for pipe friction (Fig. 6.13). 
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Fig. 6.13 The Moody chart for pipe friction with smooth and rough walls. This chart is identical to Eq. (6.48) for turbulent fl ow. (From 
Ref. 8, Source: ASME.)
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The Moody chart is probably the most famous and useful fi gure in fl uid mechanics. 
It is accurate to 615 percent for design calculations over the full range shown in 
Fig.  6.13. It can be used for circular and noncircular (Sec. 6.6) pipe fl ows and for 
open-channel fl ows (Chap. 10). The data can even be adapted as an approximation to 
boundary layer fl ows (Chap. 7).
 The Moody chart gives a good visual summary of laminar and turbulent pipe fric-
tion, including roughness effects. When the writer was in college, everyone solved 
problems by carefully reading this chart. Currently, though, Eq. (6.48), though implicit 
in f, is easily solved by iteration or a direct solver. If only a calculator is available, 
the clever explicit formula given by Haaland [33] as

 
1

f1/2 < 21.8 log c 6.9

Red
1 aε/d

3.7
b1.11 d  (6.49)

varies less than 2 percent from Eq. (6.48).
 The shaded area in the Moody chart indicates the range where transition from 
laminar to turbulent fl ow occurs. There are no reliable friction factors in this range, 
2000 , Red, , 4000. Notice that the roughness curves are nearly horizontal in the 
fully rough regime to the right of the dashed line.
 From tests with commercial pipes, recommended values for average pipe roughness 
are listed in Table 6.1.

 ε

Material Condition ft mm Uncertainty, %

Steel Sheet metal, new 0.00016 0.05 660
  Stainless, new 0.000007 0.002 650
  Commercial, new 0.00015 0.046 630
  Riveted 0.01 3.0 670
  Rusted 0.007 2.0 650
Iron Cast, new 0.00085 0.26 650
  Wrought, new 0.00015 0.046 620
  Galvanized, new 0.0005 0.15 640
  Asphalted cast 0.0004 0.12 650
Brass Drawn, new 0.000007 0.002 650
Plastic Drawn tubing 0.000005 0.0015 660
Glass — Smooth Smooth
Concrete Smoothed 0.00013 0.04 660
  Rough 0.007 2.0 650
Rubber Smoothed 0.000033 0.01 660
Wood Stave 0.0016 0.5 640

Table 6.1 Recommended 
Roughness Values for Commercial 
Ducts

2This example was given by Moody in his 1944 paper [8].

EXAMPLE 6.62

Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted 
cast iron pipe carrying water with a mean velocity of 6 ft/s.
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Solution

• System sketch:  See Fig. 6.7 for a horizontal pipe, with Dz 5 0 and hf proportional to Dp.
• Assumptions:  Turbulent fl ow, asphalted horizontal cast iron pipe, d 5 0.5 ft, L 5 200 ft.
• Approach: Find Red and ε/d; enter the Moody chart, Fig. 6.13; fi nd f, then hf and Dp.
• Property values: From Table A.3 for water, converting to BG units, ρ 5 998/515.38 5 

1.94 slug/ft3, μ 5 0.001/47.88 5 2.09 E-5 slug/(ft-s).
• Solution step 1: Calculate Red and the roughness ratio. As a crutch, Moody provided 

water and air values of “Vd” at the top of Fig. 6.13 to fi nd Red. Instead, let’s calculate it 
ourselves:

Red 5
ρVd

μ
5

(1.94 slug/ft3) (6 ft/s) (0.5 ft)

2.09 E-5 slug/(ft # s)
< 279,000  (turbulent)

From Table 6.1, for asphalted cast iron, ε 5 0.0004 ft. Then calculate

ε/d 5 (0.0004 ft)/ (0.5 ft) 5 0.0008

• Solution step 2: Find the friction factor from the Moody chart or from Eq. (6.48). If you 
use the Moody chart, Fig. 6.13, you need practice. Find the line on the right side for ε/d 5 
0.0008 and follow it back to the left until it hits the vertical line for Red < 2.79 E5. Read, 
approximately, f < 0.02 [or compute f 5 0.0198 from Eq. (6.48).]

• Solution step 3: Calculate hf from Eq. (6.10) and Dp from Eq. (6.8) for a horizontal pipe:

 hf  5 f 
L

d
 
V2

2g
5 (0.02) a200 ft

0.5 ft
b 

(6 ft/s)2

2(32.2 ft/s2)
< 4.5 ft  Ans.

 ¢p 5 ρghf 5 (1.94 slug/ft3) (32.2 ft/s2) (4.5 ft) < 280 lbf/ft2 Ans.

• Comments: In giving this example, Moody [8] stated that this estimate, even for clean 
new pipe, can be considered accurate only to about 610 percent.

EXAMPLE 6.7

Oil, with ρ 5 900 kg/m3 and ν 5 0.00001 m2/s, fl ows at 0.2 m3/s through 500 m of 200-mm-
diameter cast iron pipe. Determine (a) the head loss and (b) the pressure drop if the pipe 
slopes down at 108 in the fl ow direction.

Solution

First compute the velocity from the known fl ow rate:

V 5
Q

πR2 5
0.2 m3/s

π(0.1 m)2 5 6.4 m/s

Then the Reynolds number is

Red 5
Vd

v
5

(6.4 m/s)(0.2 m)

0.00001 m2/s
5 128,000
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From Table 6.1, ε 5 0.26 mm for cast iron pipe. Then

ε

d
5

0.26 mm

200 mm
5 0.0013

Enter the Moody chart on the right at ε/d 5 0.0013 (you will have to interpolate), and move to 
the left to intersect with Re 5 128,000. Read f < 0.0225 [from Eq. (6.48) for these values we 
could compute f 5 0.0227]. Then the head loss is

 hf 5 f 
L

d
 
V2

2g
5 (0.0225) 

500 m

0.2 m
 

(6.4 m/s)2

2(9.81 m/s2)
5 117 m Ans. (a)

From Eq. (6.9) for the inclined pipe,

hf 5
¢p

ρg
1 z1 2 z2 5

¢p

ρg
1 L sin 10°

or  ¢p 5 ρg 3hf 2 (500 m) sin 10° 4 5 ρg(117 m 2 87 m)

 5 (900 kg/m3)(9.81 m/s2)(30 m) 5 265,000 kg/(m # s2) 5 265,000 Pa Ans. (b)

EXAMPLE 6.8

Repeat Example 6.4 to see whether there is any possible turbulent fl ow solution for a 
smooth-walled pipe.

Solution

In Example 6.4 we estimated a head loss hf < 1.66 ft, assuming laminar exit fl ow (α < 2.0). 
For this condition the friction factor is

f 5 hf 
d

L
 
2g

V2 5 (1.66 ft) 
(0.004 ft) (2)(32.2 ft/s2)

(1.0 ft) (3.32 ft/s)2 < 0.0388

For laminar fl ow, Red 5 64/f 5 64/0.0388 < 1650, as we showed in Example 6.4. However, 
from the Moody chart (Fig. 6.13), we see that f 5 0.0388 also corresponds to a turbulent 
smooth-wall condition, at Red < 4500. If the fl ow actually were turbulent, we should change 
our kinetic energy factor to α < 1.06 [Eq. (3.77)], whence the corrected hf < 1.82 ft and f < 
0.0425. With f  known, we can estimate the Reynolds number from our formulas:

Red < 3250  3Eq. (6.38) 4    or    Red < 3400  3Eq. (6.39b) 4
So the fl ow might have been turbulent, in which case the viscosity of the fl uid would have been

 μ 5
ρVd

Red
5

1.80(3.32)(0.004)

3300
5 7.2 3 1026 slug/(ft # s)  Ans.

This is about 55 percent less than our laminar estimate in Example 6.4. The moral is to keep 
the capillary-fl ow Reynolds number below about 1000 to avoid such duplicate solutions.
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6.7 Four Types of Pipe Flow 
Problems

 The Moody chart (Fig. 6.13) can be used to solve almost any problem involving 
 friction losses in long pipe fl ows. However, many such problems involve considerable 
iteration and repeated calculations using the chart because the standard Moody chart 
is essentially a head loss chart. One is supposed to know all other variables, compute 
Red, enter the chart, fi nd f, and hence compute hf. This is one of four fundamental 
problems which are commonly encountered in pipe fl ow calculations:

1. Given d, L, and V or Q, ρ, μ, and g, compute the head loss hf (head loss problem).

2. Given d, L, hf, ρ, μ, and g, compute the velocity V or fl ow rate Q (fl ow rate 
problem).

3. Given Q, L, hf, ρ, μ, and g, compute the diameter d of the pipe (sizing problem).

4. Given Q, d, hf, ρ, μ, and g, compute the pipe length L.

Problems 1 and 4 are well suited to the Moody chart. We have to iterate to compute 
velocity or diameter because both d and V are contained in the ordinate and the 
abscissa of the chart.
 There are two alternatives to iteration for problems of type 2 and type 3: (a) prepa-
ration of a suitable new Moody-type formula (see Probs. P6.68 and P6.73); or (b) the 
use of solver software, like Excel. Examples 6.9 and 6.11 include the Excel approach 
to these problems.

Type 2 Problem: 
Find the Flow Rate

 Even though velocity (or fl ow rate) appears in both the ordinate and the abscissa on 
the Moody chart, iteration for turbulent fl ow is nevertheless quite fast because f varies 
so slowly with Red. In earlier editions, the writer rescaled the Colebrook formula 
(6.48) into a relation where Q could be calculated directly. That idea is now down-
sized to Problem P6.68. Example 6.9, which follows, is illustrated both by iteration 
and by an Excel solution.

EXAMPLE 6.9

Oil, with ρ 5 950 kg/m3 and ν 5 2 E-5 m2/s, fl ows through a 30-cm-diameter pipe 100 m 
long with a head loss of 8 m. The roughness ratio is ε/d 5 0.0002. Find the average veloc-
ity and fl ow rate.

Iterative Solution

By defi nition, the friction factor is known except for V:

 f 5 hf  
d

L
 
2g

V2 5 (8 m) a 0.3 m

100 m
b c 2(9.81 m/s2)

V2 d     or    f V2 < 0.471 (SI units)

To get started, we only need to guess f, compute V 5 10.471/f , then get Red, compute a 
better f from the Moody chart, and repeat. The process converges fairly rapidly. A good fi rst 
guess is the “fully rough” value for ε/d 5 0.0002, or f < 0.014 from Fig. 6.13. The iteration 
would be as follows:

Guess f < 0.014, then V 5 10.471/0.014 5 5.80 m/s and Red 5 Vd/ν < 87,000. 
At Red 5 87,000 and ε/d 5 0.0002, compute fnew < 0.0195 [Eq. (6.48)].
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New f < 0.0195, V 5 10.471/0.0195 5 4.91 m/s and Red 5 Vd/ν 5 73,700. At 
Red 5 73,700 and ε/d 5 0.0002, compute fnew < 0.0201 [Eq. (6.48)].

Better f < 0.0201, V 5 10.471/0.0201 5 4.84 m/s and Red < 72,600. At 
Red 5 72,600 and ε/d 5 0.0002, compute fnew < 0.0201 [Eq. (6.48)].

We have converged to three signifi cant fi gures. Thus our iterative solution is

 V 5 4.84 m/s

  Q 5 V aπ

4
b d2 5 (4.84) aπ

4
b (0.3)2 < 0.342 m3/s Ans.

The iterative approach is straightforward and not too onerous, so it is routinely used by 
 engineers. Obviously this repetitive procedure is ideal for a personal computer.

Solution by Iteration with Excel

To iterate by repeated copying in Excel, we need fi ve columns: velocity, fl ow rate, Reynolds 
number, an initial guess for f, and a calculation of f  from (ε/d) 5 0.0002 and the current value 
of Red. We modify our guess for f, in the next row, with the new value of f and calculate again, 
as shown in the following table. Since f is a slowly varying function, the process converges 
rapidly.

 V(m/s) 5  Q(m3/s) 5 Red 5 
 (0.471/E1)^0.5  (p/4)A1*0.3^2 A1*0.3/0.00002 f(Eq. 6.48) f-guess

  A B C D  E

1  5.8002 0.4100 87004 0.02011 0.01400
2 4.8397 0.3421 72596 0.02011 0.02011
3  4.8397 0.3421 72596 0.02011 0.02011

As shown in the hand-iterated method, the proper solution is V 5 4.84 m/s and 
Q 5 0.342 m2/s.

Type 3 Problem: 
Find the Pipe Diameter

 The Moody chart is especially awkward for fi nding the pipe size, since d occurs in 
all three parameters f, Red, and ε/d. Further, it depends on whether we know the 
velocity or the fl ow rate. We cannot know both, or else we could immediately com-
pute d 5 14Q/ (πV).
 Let us assume that we know the fl ow rate Q. Note that this requires us to redefi ne 
the Reynolds number in terms of Q:

 Red 5
Vd

ν
5

4Q

πdν
 (6.50)

If, instead, we knew the velocity V, we could use the fi rst form for the Reynolds 
number. The writer fi nds it convenient to solve the Darcy friction factor correlation, 
Eq. (6.10), by solving for f :

 f 5 hf 
d

L
 
2g

V2 5
π2

8
 
ghf  d

5

LQ2  (6.51)
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The following two examples illustrate the iteration.

EXAMPLE 6.10

Work Example 6.9 backward, assuming that Q 5 0.342 m3/s and ε 5 0.06 mm are known 
but that d (30 cm) is unknown. Recall L 5 100 m, ρ 5 950 kg/m3, ν 5 2 E-5 m2/s, and 
hf 5 8 m.

Iterative Solution

First write the diameter in terms of the friction factor:

 f 5
π2

8
 

(9.81 m/s2)(8 m)d 
5

(100 m)(0.342 m3/s)2 5 8.28d 
5    or    d < 0.655f 1/5 (1)

in SI units. Also write the Reynolds number and roughness ratio in terms of the diameter:

 Red 5
4(0.342 m3/s)

π(2 E-5 m2/s)d
5

21,800

d
 (2)

 
ε

d
5

6 E-5 m

d
 (3)

Guess f, compute d from (1), then compute Red from (2) and ε/d from (3), and compute a better 
f from the Moody chart or Eq. (6.48). Repeat until (fairly rapid) convergence. Having no initial 
estimate for f, the writer guesses f < 0.03 (about in the middle of the turbulent portion of the 
Moody chart). The following calculations result:

 f < 0.03    d < 0.655(0.03)1/5 < 0.325 m

 Red <
21,800

0.325
< 67,000    

ε

d
< 1.85 E-4

Eq. (6.48):  fnew < 0.0203    then    dnew < 0.301 m

 Red,new < 72,500    
ε

d
< 2.0 E-4

Eq. (6.48):  fbetter < 0.0201    and    d 5 0.300 m Ans.

The procedure has converged to the correct diameter of 30 cm given in Example 6.9.

Solution by Iteration with Excel

To iterate by repeated copying in Excel, we need fi ve columns: ε/d, friction factor, Reynolds 
number, diameter d, and an initial guess for f. With the guess for f, we calculate d < 0.655f 1/5, 
Red < 21,800/d, and ε/d 5 (0.00006 m)/d. Replace the guessed f with the new f. Thus Excel 
is doing the work of our previous hand calculation:
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 ε/d 5    Red 5  d(meters) 5
 0.00006/d f 2 Eq. (6.48) 21,800/d 0.655f^0.2 f-guess

  A B C D E

1  0.000185 0.0196 67111 0.325 0.0300
2 0.000201 0.0201 73106 0.298 0.0196
3 0.000200 0.0201 72677 0.300 0.0201
4  0.000200 0.0201 72706 0.300 0.0201

As shown in our hand-iterated method, the proper solution is d 5 0.300 m.

EXAMPLE 6.11

A smooth plastic pipe is to be designed to carry 8 ft3/s of water at 208C through 1000 ft of 
horizontal pipe with an exit at 15 lbf/in2. The pressure drop is to be approximately 250 lbf/in2. 
Determine (a) the proper diameter for this pipe and (b) whether a Schedule 40 is suitable 
if the pipe material has an allowable stress of 8000 lbf/in2.

Solution by Excel Iteration

Assumptions: Steady turbulent fl ow, smooth walls. For water, take ρ 5 1.94 slug/ft3 and 
μ 5 2.09 E-5 slug/(ft ? s). With d unknown, use Eq. (6.51):

 f 5
π2

8
 
ghf d5

LQ2 5
π2

8
 
¢pd5

ρLQ2 5
π2

8
 

(250 3 144 lbf/ft2)d5

(1.94 slug/ft3) (1000 ft) (8 ft3/s)2 5 0.358 d5  (1)

We know neither d nor f, but they are related by the Prandtl formula, Eq. (6.38):

 
1

f 
1/2 < 2.0 log(Red f 

1/2) 2 0.8, Red 5
ρVd

μ
5

4ρQ

πμd
5

4(1.94)(8)

π (2.09 E 2 5)d
5

945,500

d
 (2)

Part (a) Equations (1) and (2) can be solved simultaneously for f and d. Using Excel iteration, we 
have four columns: a guessed f 5 0.02, d from Eq. (1), Red from Eq. (2), and a better f from 
Eq. (6.38). The pipe is smooth, so we don’t need roughness:

 f 2 Eq. (6.38) Red 5 945500/C2 d 5 (D2/0.358)^0.2 f-guess

  A B C D

1  0.01009 1683574 0.562 0.02000
2 0.01047 1930316 0.490 0.01009
3 0.01044 1916418 0.493 0.01047
4  0.01045 1917156 0.493 0.01044

The process converges rapidly to:

Red < 1.92 E6;  f < 0.01045;  d < 0.493 ft 

Take the next highest Schedule 40 diameter in Table 6.2: d < 0.5 ft 5 6 in Ans. (a)
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Part (b) Check to see if Schedule 40 is strong enough. The maximum pressure occurs at the pipe 
 entrance: pmax 5 pexit + Dp 5 15 + 250 5 265 lb/in2. The schedule number is thus

Schedule number 5 (1000)
(maximum pressure)

(allowable stress)
5 (1000)a 265 psi

8000 psi
b < 33

Schedule 30 is too weak for this pressure, so choose a Schedule 40 pipe. Ans. (b)

Commercial Pipe Sizes  In solving a problem to fi nd the pipe diameter, we should note that commercial pipes 
are made only in certain sizes. Table 6.2 gives nominal and actual sizes of pipes in 
the United States. The term Schedule 40 is a measure of the pipe thickness and its 
resistance to stress caused by internal fl uid pressure. If P is the internal fl uid pressure 
and S is the allowable stress of the pipe material, then the schedule number 5 (1000)
(P/S). Commercial schedules vary from 5 to 160, but 40 and 80 are by far the most 
popular. Example 6.11 is a typical application.

Type 4 Problem: 
Find the Pipe Length

 In designing piping systems, it is desirable to estimate the appropriate pipe length for 
a given pipe diameter, pump power, and fl ow rate. The pump head will match the 
piping head loss. If minor losses, Sec. 6.9, are neglected, the (horizontal) pipe length 
follows from Darcy’s formula (6.10):

 hpump 5
Power

ρgQ
5 hf 5 f 

L

d
 

V2

2g
 (6.52)

With Q, d, and ε known, we may compute Red and f, after which L is obtained 
from the formula. Note that pump effi ciency varies strongly with fl ow rate 
(Chap.  11). Thus, it is important to match pipe length to the pump’s region of 
maximum  effi ciency.

Nominal size, in Actual ID, in Wall thickness, in

 1/8  0.269 0.068
 1/4  0.364 0.088
 3/8  0.493 0.091
 1/2  0.622 0.109
 3/4  0.824 0.113
 1  1.049 0.133
 1-1/2  1.610 0.145
 2  2.067 0.154
 2-1/2  2.469 0.203
 3  3.068 0.216
 4  4.026 0.237
 5  5.047 0.258
 6  6.065 0.280

Table 6.2 Nominal and Actual 
Sizes of Schedule 40 Pipe
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EXAMPLE 6.12

A pump delivers 0.6 hp to water at 688F, fl owing in a 6-in-diameter asphalted cast iron 
horizontal pipe at V 5 6 ft/s. What is the proper pipe length to match these conditions?

Solution

• Approach:  Find hf from the known power and fi nd f from Red and ε/d. Then fi nd L.
• Water properties:  For water at 688F, Table A.3, converting to BG units, ρ 5 1.94 slug/ft3 

and μ 5 2.09 E25 slug/(ft 2 s).
• Pipe roughness:  From Table 6.1 for asphalted cast iron, ε 5 0.0004 ft.
• Solution step 1:  Find the pump head from the fl ow rate and the pump power:

 Q 5 AV 5
π

4
(0.5 ft)2a6 

ft

s
b 5 1.18 

ft3

s

 hpump 5
Power

ρgQ
5

(0.6 hp) 3550(ft # lbf )/ (s # hp) 4
(1.94 slug/ft3) (32.2 ft/s2) (1.18 ft3/s)

5 4.48 ft

• Solution step 2: Compute the friction factor from the Colebrook formula, Eq. (6.48):

 Red 5
ρVd

μ
5

(1.94) (6)(0.5)

2.09 E25
5 278,500  

ε

d
5

0.0004 ft

0.5 ft
5 0.0008

 
1

1f 
< 22.0 log10 aε/d

3.7
1

2.51

Red1f 
b  yields  f 5 0.0198

• Solution step 3: Find the pipe length from the Darcy formula (6.10):

hp 5 hf 5 4.48 ft 5 f  

L

d
 

V2

2g
5 (0.0198)a L

0.5 ft
b 

(6 ft/s)2

2(32.2 ft/s2)

 Solve for L < 203 ft Ans.

• Comment: This is Moody’s problem (Example 6.6) turned around so that the length is unknown.

6.8 Flow in Noncircular Ducts3 If the duct is noncircular, the analysis of fully developed fl ow follows that of the 
circular pipe but is more complicated algebraically. For laminar fl ow, one can solve 
the exact equations of continuity and momentum. For turbulent fl ow, the logarithm 
law velocity profi le can be used, or (better and simpler) the hydraulic diameter is an 
excellent approximation.

The Hydraulic Diameter  For a noncircular duct, the control volume concept of Fig. 6.7 is still valid, but the 
cross-sectional area A does not equal πR2 and the cross-sectional perimeter wetted by 
the shear stress 3 does not equal 2πR. The momentum equation (6.9a) thus becomes

¢p A 1 ρgA ¢L sin ϕ 2 τw3¢L 5 0

or hf 5
¢p

ρg
1 ¢z 5

τw

ρg
 
¢L

A/3
 (6.53)

3This section may be omitted without loss of continuity.
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Comparing this to Eq. (6.9b), we see that A/3 takes the place of one-fourth of the 
pipe diameter for a circular cross section. We defi ne the friction factor in terms of 
average shear stress:

 fNCD 5
8τw

ρV2  (6.54)

where NCD stands for noncircular duct and V 5 Q/A as usual, Eq. (6.53) becomes

 hf 5 f 

L

Dh
 

V2

2g
 (6.55)

This is equivalent to Eq. (6.10) for pipe fl ow except that d is replaced by Dh. Therefore, 
we customarily defi ne the hydraulic diameter as

 Dh 5
4A

3
5

4 3 area

wetted perimeter
 (6.56)

We should stress that the wetted perimeter includes all surfaces acted upon by the 
shear stress. For example, in a circular annulus, both the outer and the inner perimeter 
should be added.
 We would therefore expect by dimensional analysis that this friction factor f, based 
on hydraulic diameter as in Eq. (6.55), would correlate with the Reynolds number 
and roughness ratio based on the hydraulic diameter

 f 5 F aVDh

ν
, 

ε

Dh
b (6.57)

and this is the way the data are correlated. But we should not necessarily expect the 
Moody chart (Fig. 6.13) to hold exactly in terms of this new length scale. And it does 
not, but it is surprisingly accurate:

 f < μ 64

ReDh

640% laminar flow

fMoody aReDh,
 

ε

Dh
b 615% turbulent flow

 (6.58)

Now let us look at some particular cases.

Flow between Parallel Plates  Probably the simplest noncircular duct fl ow is fully developed fl ow between parallel 
plates a distance 2h apart, as in Fig. 6.14. As noted in the fi gure, the width b W h, 
so the fl ow is essentially two-dimensional; that is, u 5 u(y) only. The hydraulic 
diameter is

 Dh 5
4A

3
5 lim

bSq
 

4(2bh)

2b 1 4h
5 4h (6.59)

that is, twice the distance between the plates. The pressure gradient is constant, 
(2dp/dx) 5 Dp/L, where L is the length of the channel along the x axis.

Highlight

Highlight

Highlight
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Laminar Flow Solution  The laminar solution was given in Sec. 4.10, in connection with Fig. 4.16b. Let us 
review those results here:

 u 5 umax a1 2
y2

h2b where umax 5
h2

2μ
 
¢p

L

 Q 5
2bh3

3μ
 
¢p

L

  V 5
Q

A
5

h2

3μ
 
¢p

L
5

2

3
 umax  (6.60)

 τw 5 μ ` du

dy
`
y5h

5 h
¢p

L
5

3μV

h

 hf 5
¢p

ρg
5

3μLV

ρgh2

Now use the head loss to establish the laminar friction factor:

 flam 5
hf

(L/Dh)(V2/2g)
5

96μ

ρV(4h)
5

96

ReDh

 (6.61)

Thus, if we could not work out the laminar theory and chose to use the approximation 
f < 64/ReDh

, we would be 33 percent low. The hydraulic-diameter approximation is 
relatively crude in laminar fl ow, as Eq. (6.58) states.
 Just as in circular-pipe fl ow, the laminar solution above becomes unstable at about 
ReDh

 < 2000; transition occurs and turbulent fl ow results.

Turbulent Flow Solution  For turbulent fl ow between parallel plates, we can again use the logarithm law, 
Eq.  (6.28), as an approximation across the entire channel, using not y but a wall 
coordinate Y, as shown in Fig. 6.14:

 
u(Y)

u*
<

1
κ

 ln 
Yu*

ν
1 B    0 , Y , h (6.62)

This distribution looks very much like the fl at turbulent profi le for pipe fl ow in 
Fig. 6.11b, and the mean velocity is

 V 5
1

h #
h

0

u dY 5 u*a1
κ

 ln 
hu*

ν
1 B 2

1
κ
b (6.63)

u max

2 h

Y

y

y = +h

u ( y)

x

y = – h

b → ∞

Fig. 6.14 Fully developed fl ow 
between parallel plates.
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Recalling that V/u* 5 (8/f)1/2, we see that Eq. (6.63) is equivalent to a parallel-plate 
friction law. Rearranging and cleaning up the constant terms, we obtain

 
1

f 1/2 < 2.0 log (ReDh   
f 1/2) 2 1.19 (6.64)

where we have introduced the hydraulic diameter Dh 5 4h. This is remarkably close 
to the smooth-wall pipe friction law, Eq. (6.38). Therefore we conclude that the use 
of the hydraulic diameter in this turbulent case is quite successful. That turns out to 
be true for other noncircular turbulent fl ows also.
 Equation (6.64) can be brought into exact agreement with the pipe law by rewriting 
it in the form

 
1

f 1/2 5 2.0 log (0.64 ReDh   
f 1/2) 2 0.8 (6.65)

Thus the turbulent friction is predicted most accurately when we use an effective 
diameter Deff equal to 0.64 times the hydraulic diameter. The effect on f itself is much 
less, about 10 percent at most. We can compare with Eq. (6.66) for laminar fl ow, 
which predicted

Parallel plates: Deff 5
64

96
Dh 5

2

3
Dh (6.66)

This close resemblance (0.64Dh versus 0.667Dh) occurs so often in noncircular 
duct fl ow that we take it to be a general rule for computing turbulent friction 
in ducts:

Deff 5 Dh 5
4A

3
  reasonable accuracy

  Deff 5 Dh
64

( f ReDh
)laminar theory

  better accuracy (6.67)

Jones [10] shows that the effective-laminar-diameter idea collapses all data for rect-
angular ducts of arbitrary height-to-width ratio onto the Moody chart for pipe fl ow. 
We recommend this idea for all noncircular ducts.

EXAMPLE 6.13

Fluid fl ows at an average velocity of 6 ft/s between horizontal parallel plates a distance of 
2.4 in apart. Find the head loss and pressure drop for each 100 ft of length for ρ 5 1.9 
slugs/ft3 and (a) ν 5 0.00002 ft2/s and (b) ν 5 0.002 ft2/s. Assume smooth walls.

Solution

Part (a) The viscosity μ 5 ρν 5 3.8 3 1025 slug/(ft ? s). The spacing is 2h 5 2.4 in 5 0.2 ft, and Dh 5 
4h 5 0.4 ft. The Reynolds number is

ReDh
5

VDh

ν
5

(6.0 ft/s) (0.4 ft)

0.00002 ft2/s
5 120,000
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The fl ow is therefore turbulent. For reasonable accuracy, simply look on the Moody chart 
(Fig. 6.13) for smooth walls:

 f < 0.0173  hf < f 
L

Dh
 
V2

2g
5 0.0173 

100

0.4
 

(6.0)2

2(32.2)
< 2.42 ft Ans. (a)

Since there is no change in elevation,

 ¢p 5 ρghf 5 1.9(32.2)(2.42) 5 148 lbf/ft2 Ans. (a)

This is the head loss and pressure drop per 100 ft of channel. For more accuracy, take 
Deff 5 64

96Dh from laminar theory; then

Reeff 5 64
96(120,000) 5 80,000

and from the Moody chart read f < 0.0189 for smooth walls. Thus a better estimate is

hf 5 0.0189 
100

0.4
 

(6.0)2

2(32.2)
5 2.64 ft

and ¢p 5 1.9(32.2)(2.64) 5 161 lbf/ft2 Better ans. (a)

The more accurate formula predicts friction about 9 percent higher.

Part (a) Compute μ 5 ρν 5 0.0038 slug/(ft ? s). The Reynolds number is 6.0(0.4)/0.002 5 1200; 
therefore the fl ow is laminar, since Re is less than 2300.
 You could use the laminar fl ow friction factor, Eq. (6.61)

flam 5
96

ReDh

5
96

1200
5 0.08

from which  hf 5 0.08 
100

0.4
 

(6.0)2

2(32.2)
5 11.2 ft  

and  ¢p 5 1.9(32.2)(11.2) 5 684 lbf/ft2 Ans. (b)

Alternately you can fi nesse the Reynolds number and go directly to the appropriate laminar 
fl ow formula, Eq. (6.60):

V 5
h2

3μ
 
¢p

L

or ¢p 5
3(6.0 ft/s) 30.0038 slug/(ft # s) 4 (100 ft)

(0.1 ft)2 5 684 slugs/(ft # s2) 5 684 lbf/ft2

and hf 5
¢p

ρg
5

684

1.9(32.2)
5 11.2 ft 

Flow through a Concentric 
Annulus

 Consider steady axial laminar fl ow in the annular space between two concentric 
 cylinders, as in Fig. 6.15. There is no slip at the inner (r 5 b) and outer radius (r 5 a). 
For u 5 u(r) only, the governing relation is Eq. (D.7) in Appendix D:

 
d

dr
 arμ

du

dr
b 5 Kr    K 5

d

dx
 (p 1 ρgz) (6.68)
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Integrate this twice:

u 5
1

4
 r2 

K

μ
1 C1 ln r 1 C2

The constants are found from the two no-slip conditions:

 u(r 5 a) 5 0 5
1

4
a2 

K

μ
1 C1 ln a 1 C2

 u(r 5 b) 5 0 5
1

4
b2 

K

μ
1 C1 ln b 1 C2

The fi nal solution for the velocity profi le is

 u 5
1

4μ
c2 d

dx
 (p 1 ρgz) d ca2 2 r2 1

a2 2 b2

ln (b/a)
 ln 

a
r
d  (6.69)

The volume fl ow is given by

 Q 5 #
a

b

u 2πr dr 5
π

8μ
c2 d

dx
 (p 1 ρgz) d ca4 2 b4 2

(a2 2 b2)2

ln (a/b)
d  (6.70)

The velocity profi le u(r) resembles a parabola wrapped around in a circle to form a 
split doughnut, as in Fig. 6.15.
 It is confusing to base the friction factor on the wall shear because there are two 
shear stresses, the inner stress being greater than the outer. It is better to defi ne f with 
respect to the head loss, as in Eq. (6.55),

 f 5 hf 
Dh

L
 
2g

V2    where V 5
Q

π(a2 2 b2)
 (6.71)

The hydraulic diameter for an annulus is

 Dh 5
4π(a2 2 b2)

2π(a 1 b)
5 2(a 2 b) (6.72)

It is twice the clearance, rather like the parallel-plate result of twice the distance 
between plates [Eq. (6.59)].

u(r)

u(r)

r

r = b

r = a

x

Fig. 6.15 Fully developed fl ow 
through a concentric annulus.
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 Substituting hf, Dh, and V into Eq. (6.71), we fi nd that the friction factor for laminar 
fl ow in a concentric annulus is of the form

 f 5
64ζ

ReDh

    ζ 5
(a 2 b)2(a2 2 b2)

a4 2 b4 2 (a2 2 b2)2/ln (a/b)
 (6.73)

The dimensionless term z is a sort of correction factor for the hydraulic diameter. We 
could rewrite Eq. (6.73) as

Concentric annulus: f 5
64

Reeff
    Reeff 5

1

ζ
 ReDh

 (6.74)

Some numerical values of f ReDh
 and Deff/Dh 5 1/z are given in Table 6.3. Again, 

laminar annular fl ow becomes unstable at ReDh
 < 2000.

 For turbulent fl ow through a concentric annulus, the analysis might proceed by 
patching together two logarithmic law profi les, one going out from the inner wall 
to meet the other coming in from the outer wall. We omit such a scheme here and 
proceed directly to the friction factor. According to the general rule proposed in 
Eq. (6.58), turbulent friction is predicted with excellent accuracy by replacing d in 
the Moody chart with Deff 5 2(a 2 b)/z, with values listed in Table 6.3.4 This idea 
includes roughness also (replace ε/d in the chart with ε/Deff). For a quick design 
number with about 10 percent accuracy, one can simply use the hydraulic diameter 
Dh 5 2(a 2 b).

EXAMPLE 6.14

What should the reservoir level h be to maintain a fl ow of 0.01 m3/s through the commer-
cial steel annulus 30 m long shown in Fig. E6.14? Neglect entrance effects and take ρ 5 
1000 kg/m3 and ν 5 1.02 3 1026 m2/s for water.

4Jones and Leung [44] show that data for annular flow also satisfy the effective-laminar- 
diameter idea.

Solution

• Assumptions: Fully developed annulus fl ow, minor losses neglected.
• Approach: Determine the Reynolds number, then fi nd f and hf and thence h.

1

2

Water L = 30 m

Q, V

a = 5 cm
b = 3 cm

h = ?

E6.14

b/a f ReDh Deff/Dh 5 1/z

0.0 64.0 1.000
0.00001 70.09 0.913
0.0001 71.78 0.892
0.001 74.68 0.857
0.01 80.11 0.799
0.05 86.27 0.742
0.1 89.37 0.716
0.2 92.35 0.693
0.4 94.71 0.676
0.6 95.59 0.670
0.8 95.92 0.667
1.0 96.0 0.667

Table 6.3 Laminar Friction Factors 
for a Concentric Annulus
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• Property values: Given ρ 5 1000 kg/m3 and ν 5 1.02 E-6 m2/s.
• Solution step 1: Calculate the velocity, hydraulic diameter, and Reynolds number:

V 5
Q

A
5

0.01 m3/s

π 3 (0.05 m)2 2 (0.03 m)2 4 5 1.99 
m

s

Dh 5 2(a 2 b) 5 2(0.05 m 2 0.03 m) 5 0.04 m

ReDh
5

VDh

ν
5

(1.99 m/s)(0.04 m)

1.02 E-6 m2/s
5 78,000  (turbulent flow)

• Solution step 2: Apply the steady fl ow energy equation between sections 1 and 2:

p1

ρg
1

α1V1
2

2g
1 z1 5

p2

ρg
1

α2V2
2

2g
1 z2 1 hf

or h 5
α2V2

2

2g
1 hf 5

V2
2

2g
 aα2 1 f 

L

Dh
b (1)

 Note that z1 5 h. For turbulent fl ow, from Eq. (3.43c), we estimate α2 < 1.03

• Solution step 3:  Determine the roughness ratio and the friction factor. From Table 6.1, 
for (new) commercial steel pipe, ε 5 0.046 mm. Then

ε

Dh
5

0.046 mm

40 mm
5 0.00115

 For a reasonable estimate, use ReDh
 to estimate the friction factor from Eq. (6.48):

1

1f 
< 22.0 log10 a0.00115

3.7
1

2.51

78,0001f 
b  solve for f < 0.0232

For slightly better accuracy, we could use Deff 5 Dh/ζ. From Table 6.3, for b/a 5 3/5, 
1/z 5 0.67. Then Deff 5 0.67(40 mm) 5 26.8 mm, whence ReDeff

 5 52,300, ε/Deff 5 0.00172, 
and feff < 0.0257. Using the latter estimate, we fi nd the required reservoir level from Eq. (1):

 h 5
V2

2

2g
 aα2 1 feff 

L

Dh
b 5

(1.99 m/s)2

2(9.81 m/s)2 c 1.03 1 0.0257
30 m

0.04 m
d < 4.1 m Ans.

• Comments: Note that we do not replace Dh with Deff in the head loss term fL/Dh, which 
comes from a momentum balance and requires hydraulic diameter. If we used the simpler 
friction estimate, f < 0.0232, we would obtain h < 3.72 m, or about 9 percent lower.

Other Noncircular Cross Sections  In principle, any duct cross section can be solved analytically for the laminar fl ow 
velocity distribution, volume fl ow, and friction factor. This is because any cross sec-
tion can be mapped onto a circle by the methods of complex variables, and other 
powerful analytical techniques are also available. Many examples are given by White 
[3, pp. 112–115], Berker [11], and Olson [12]. Reference 34 is devoted entirely to 
laminar duct fl ow.
 In general, however, most unusual duct sections have strictly academic and not 
commercial value. We list here only the rectangular and isosceles-triangular sections, 
in Table 6.4, leaving other cross sections for you to fi nd in the references.
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 For turbulent fl ow in a duct of unusual cross section, one should replace d with Dh 
on the Moody chart if no laminar theory is available. If laminar results are known, such 
as Table 6.4, replace d with Deff 5 [64/(fRe)]Dh for the particular geometry of the duct.
 For laminar fl ow in rectangles and triangles, the wall friction varies greatly, being 
largest near the midpoints of the sides and zero in the corners. In turbulent fl ow through 
the same sections, the shear is nearly constant along the sides, dropping off sharply to 
zero in the corners. This is because of the phenomenon of turbulent secondary fl ow, in 
which there are nonzero mean velocities v and w in the plane of the cross section. Some 
measurements of axial velocity and secondary fl ow patterns are shown in Fig. 6.16, as 
sketched by Nikuradse in his 1926 dissertation. The secondary fl ow “cells” drive the 
mean fl ow toward the corners, so that the axial velocity contours are similar to the 
cross section and the wall shear is nearly constant. This is why the hydraulic-diameter 
concept is so successful for turbulent fl ow. Laminar fl ow in a straight noncircular duct 
has no secondary fl ow. An accurate theoretical prediction of turbulent secondary fl ow 
has yet to be achieved, although numerical models are often successful [36].

EXAMPLE 6.15

Air, with ρ 5 0.00237 slug/ft3 and ν 5 0.000157 ft2/s, is forced through a horizontal square 
9-by-9-in duct 100 ft long at 25 ft3/s. Find the pressure drop if ε 5 0.0003 ft.

Solution

Compute the mean velocity and hydraulic diameter:

V 5
25 ft3/s

(0.75 ft)2 5 44.4 ft/s

Dh 5
4A

3
5

4(81 in2)

36 in
5 9 in 5 0.75 ft

Rectangular Isosceles triangle

b
a

2θ

b/a f ReDh θ, deg f ReDh

0.0 96.00  0 48.0
0.05 89.91 10 51.6
0.1 84.68 20 52.9
0.125 82.34 30 53.3
0.167 78.81 40 52.9
0.25 72.93 50 52.0
0.4 65.47 60 51.1
0.5 62.19 70 49.5
0.75 57.89 80 48.3
1.0 56.91 90 48.0

Table 6.4 Laminar Friction 
Constants f Re for Rectangular and 
Triangular Ducts

Midplane

(a) (b)

Fig. 6.16 Illustration of secondary 
turbulent fl ow in noncircular ducts: 
(a) axial mean velocity contours; 
(b) secondary fl ow in-plane cellular 
motions. (After J. Nikuradse, 
dissertation, Göttingen, 1926.)
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From Table 6.4, for b/a 5 1.0, the effective diameter is

Deff 5
64

56.91
Dh 5 0.843 ft

whence Reeff 5
VDeff

ν
5

44.4(0.843)

0.000157
5 239,000

ε

Deff
5

0.0003

0.843
5 0.000356

From the Moody chart, read f 5 0.0177. Then the pressure drop is

¢p 5 ρghf 5 ρg af 
L

Dh
 
V 2

2g
b 5 0.00237(32.2) c 0.0177

100

0.75
 

44.42

2(32.2)
d

or Dp 5 5.5 lbf/ft2 Ans.

Pressure drop in air ducts is usually small because of the low density.

6.9 Minor or Local Losses in 
Pipe Systems

 For any pipe system, in addition to the Moody-type friction loss computed for the 
length of pipe, there are additional so-called minor losses or local losses due to

1. Pipe entrance or exit.

2. Sudden expansion or contraction.

3. Bends, elbows, tees, and other fi ttings.

4. Valves, open or partially closed.

5. Gradual expansions or contractions.

The losses may not be so minor; for example, a partially closed valve can cause a 
greater pressure drop than a long pipe.
 Since the fl ow pattern in fi ttings and valves is quite complex, the theory is very 
weak. The losses are commonly measured experimentally and correlated with the pipe 
fl ow parameters. The data, especially for valves, are somewhat dependent on the 
particular manufacturer’s design, so that the values listed here must be taken as aver-
age design estimates [15, 16, 35, 43, 46].
 The measured minor loss is usually given as a ratio of the head loss hm 5 Dp/(ρg) 
through the device to the velocity head V2/(2g) of the associated piping system:

Loss coefficient K 5
hm

V2/(2g)
5

¢p
1
2ρV2 (6.75)

Although K is dimensionless, it often is not correlated in the literature with the Reyn-
olds number and roughness ratio but rather simply with the raw size of the pipe in, 
say, inches. Almost all data are reported for turbulent fl ow conditions.
 A single pipe system may have many minor losses. Since all are correlated with 
V2/(2g), they can be summed into a single total system loss if the pipe has constant 
diameter:

¢htot 5 hf 1 ghm 5
V2

2g
 a fL

d
1gKb  (6.76)

Highlight
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Note, however, that we must sum the losses separately if the pipe size changes so 
that V2 changes. The length L in Eq. (6.76) is the total length of the pipe axis.
 There are many different valve designs in commercial use. Figure 6.17 shows 
fi ve typical designs: (a) the gate, which slides down across the section; (b) the globe, 
which closes a hole in a special insert; (c) the angle, similar to a globe but with a 
908 turn; (d) the swing-check valve, which allows only one-way fl ow; and (e) the 
disk, which closes the section with a circular gate. The globe, with its tortuous fl ow 
path, has the highest losses when fully open. Many excellent details about these and 
other valves are given in the handbooks by Skousen [35] and Crane Co. [52].
 Table 6.5 lists loss coeffi cients K for four types of valve, three angles of elbow 
fi tting, and two tee connections. Fittings may be connected by either internal screws 
or fl anges, hence the two listings. We see that K generally decreases with pipe size, 
which is consistent with the higher Reynolds number and decreased roughness ratio 
of large pipes. We stress that Table 6.5 represents losses  averaged among various 
manufacturers, so there is an uncertainty as high as 650 percent.
 In addition, most of the data in Table 6.5 are relatively old [15, 16] and therefore 
based on fi ttings manufactured in the 1950s. Modern forged and molded fi ttings may 
yield somewhat different loss factors, often less than those listed in Table 6.5. An 
example, shown in Fig. 6.18a, gives recent data [48] for fairly short (bend-radius/elbow-
diameter 5 1.2) fl anged 908 elbows. The elbow diameter was 1.69 in. Notice fi rst that 
K is plotted versus Reynolds number, rather than versus the raw (dimensional) pipe 

h D

(a)(a)

DD
·

h

(b)

D

D

(c)

D

(d)

(e)

h DFig. 6.17 Typical commercial valve 
geometries: (a) gate valve; (b) globe 
valve; (c) angle valve; (d) swing-
check valve; (e) disk-type gate 
valve.
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diameters in Table 6.5, and therefore Fig. 6.18a has more generality. Then notice that 
the K values of 0.23 6 0.05 are signifi cantly less than the values for 908 elbows in 
Table 6.5, indicating smoother walls and/or better design. One may conclude that 
(1)  Table 6.5 data are probably conservative and (2) loss factors are highly dependent 
on actual design and manufacturing factors, with Table 6.5 serving only as a rough guide.
 The valve losses in Table 6.5 are for the fully open condition. Losses can be much 
higher for a partially open valve. Figure 6.18b gives average losses for three valves 

Table 6.5 Resistance Coeffi cients 
K 5 hm/[V2/(2g)] for Open Valves, 
Elbows, and Tees

 Nominal diameter, in

 Screwed Flanged

 1
2 1 2 4 1 2 4 8 20

Valves (fully open):
 Globe 14 8.2 6.9 5.7 13 8.5 6.0 5.8 5.5
 Gate 0.30 0.24 0.16 0.11 0.80 0.35 0.16 0.07 0.03
 Swing check 5.1 2.9 2.1 2.0 2.0 2.0 2.0 2.0 2.0
 Angle 9.0 4.7 2.0 1.0 4.5 2.4 2.0 2.0 2.0
Elbows:
 458 regular 0.39 0.32 0.30 0.29
 458 long radius     0.21 0.20 0.19 0.16 0.14
 908 regular 2.0 1.5 0.95 0.64 0.50 0.39 0.30 0.26 0.21
 908 long radius 1.0 0.72 0.41 0.23 0.40 0.30 0.19 0.15 0.10
 1808 regular 2.0 1.5 0.95 0.64 0.41 0.35 0.30 0.25 0.20
 1808 long radius     0.40 0.30 0.21 0.15 0.10
Tees:
 Line fl ow 0.90 0.90 0.90 0.90 0.24 0.19 0.14 0.10 0.07
 Branch fl ow 2.4 1.8 1.4 1.1 1.0 0.80 0.64 0.58 0.41

0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 4.0

Reynolds number (millions)

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

K
 f

ac
to

r

+10%

-10%

Curve-fit correlation
K = 1.49 Re-0.145

Legend

Plastic elbow
Metal elbow no. 1
Metal elbow no. 2

Fig. 6.18a Recent measured loss 
coeffi cients for 908 elbows. These 
values are less than those reported 
in Table 6.5. (From Ref. 48, 
Source of Data R. D. Coffi eld.)
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as a function of “percentage open,” as defi ned by the opening-distance ratio h/D (see 
Fig. 6.17 for the geometries). Again we should warn of a possible uncertainty of 650 
percent. Of all minor losses, valves, because of their complex geometry, are most 
sensitive to manufacturers’ design details. For more accuracy, the particular design 
and manufacturer should be consulted [35].
 The butterfl y valve of Fig. 6.19a is a stem-mounted disk that, when closed, seats 
against an O-ring or compliant seal near the pipe surface. A single 908 turn opens the 
valve completely, hence the design is ideal for controllable quick-opening and quick-
closing situations such as occur in fi re protection and the electric power industry. 
However, considerable dynamic torque is needed to close these valves, and losses are 
high when the valves are nearly closed.
 Figure 6.19b shows butterfl y-valve loss coeffi cients as a function of the opening 
angle θ for turbulent fl ow conditions (θ 5 0 is closed). The losses are huge when the 
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0.00
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D

K
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Globe

Fig. 6.18b Average loss coeffi cients 
for partially open valves (see 
sketches in Fig. 6.17).

(a)

1000.00

100.00

10.00

1.00

0.10
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Valve opening angle, degrees

(b)

K

80

Fig. 6.19 Performance of butterfl y 
valves: (a) typical geometry 
(Courtesy of Tyco Engineered 
Products and Services); (b) loss 
coeffi cients for three different 
manufacturers.
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opening is small, and K drops off nearly exponentially with the opening angle. There 
is a factor of 2 spread among the various manufacturers. Note that K in Fig. 6.19b 
is, as usual, based on the average pipe velocity V 5 Q/A, not on the increased velocity 
of the fl ow as it passes through the narrow valve passage.
 A bend or curve in a pipe, as in Fig. 6.20, always induces a loss larger than the 
simple straight-pipe Moody friction loss, due to fl ow separation on the curved walls 
and a swirling secondary fl ow arising from the centripetal acceleration. The smooth-
wall loss coeffi cients K in Fig. 6.20, from the data of Ito [49], are for total loss, 
including Moody friction effects. The separation and secondary fl ow losses decrease 
with R/d, while the Moody losses increase because the bend length increases. The 
curves in Fig. 6.20 thus show a minimum where the two effects cross. Ito [49] gives 
a curve-fi t formula for the 908 bend in turbulent fl ow:

90° bend: K < 0.388α aR

d
b0.84

ReD
20.17 where α 5 0.95 1 4.42 aR

d
b21.96

$ 1 (6.80a)

The formula accounts for Reynolds number, which equals 200,000 in Fig. 6.20. Com-
prehensive reviews of curved-pipe fl ow, for both laminar and turbulent fl ow, are given 
by Berger et al. [53] and for 908 bends by Spedding et al. [54].
 As shown in Fig. 6.21, entrance losses are highly dependent on entrance geometry, 
but exit losses are not. Sharp edges or protrusions in the entrance cause large zones 
of fl ow separation and large losses. A little rounding goes a long way, and a well-
rounded entrance (r 5 0.2d) has a nearly negligible loss K 5 0.05. At a submerged 
exit, on the other hand, the fl ow simply passes out of the pipe into the large down-
stream reservoir and loses all its velocity head due to viscous dissipation. Therefore 
K 5 1.0 for all submerged exits, no matter how well rounded.
 If the entrance is from a fi nite reservoir, it is termed a sudden contraction (SC) 
between two sizes of pipe. If the exit is to fi nite-sized pipe, it is termed a sudden 
expansion (SE). The losses for both are graphed in Fig. 6.22. For the sudden expansion, 
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Fig. 6.21 Entrance and exit loss 
coeffi cients: (a) reentrant inlets; 
(b) rounded and beveled inlets. Exit 
losses are K < 1.0 for all shapes of 
exit (reentrant, sharp, beveled, or 
rounded). 
Source: From ASHRAE Handbook-2012 
Fundamentals, ASHRAE, Atlanta, GA, 
2012.
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the shear stress in the corner separated fl ow, or deadwater region, is negligible, so that 
a control volume analysis between the expansion section and the end of the separation 
zone gives a theoretical loss:

 KSE 5 a1 2
d2

D2b2

5
hm

V2/(2g)
 (6.77)

Note that K is based on the velocity head in the small pipe. Equation (6.77) is in 
excellent agreement with experiment.
 For the sudden contraction, however, fl ow separation in the downstream pipe 
causes the main stream to contract through a minimum diameter dmin, called the vena 
contracta, as sketched in Fig. 6.22. Because the theory of the vena contracta is not 
well developed, the loss coeffi cient in the fi gure for sudden contraction is experimen-
tal. It fi ts the empirical formula

 KSC < 0.42 a1 2
d2

D2b (6.78)

up to the value d/D 5 0.76, above which it merges into the sudden-expansion predic-
tion, Eq. (6.77).

Gradual Expansion—The Diffuser  As fl ow enters a gradual expansion or diffuser, such as the conical geometry of Fig. 6.23, 
the velocity drops and the pressure rises. An effi cient diffuser reduces the pumping 
power required. Head loss can be large, due to fl ow separation on  the walls, if the 
cone angle is too great. A thinner entrance boundary layer, as in Fig. 6.6, causes 
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a slightly smaller loss than a fully developed inlet fl ow. The fl ow loss is a combina-
tion of nonideal pressure recovery plus wall friction. Some  correlating curves are 
shown in Fig. 6.23. The loss coeffi cient K is based on the velocity head in the inlet 
(small) pipe and depends upon cone angle 2θ and the diffuser diameter ratio d1/d2. 
There is scatter in the reported data [15, 16]. The curves in Fig. 6.23 are based on a 
correlation by A. H. Gibson [50], cited in Ref. 15:

 Kdiffuser 5
hm

V2
1y(2 g)

< 2.61 sin θ a1 2
d2

D2b2

1 favg 
L

davg
   for   2θ # 45° (6.79)

For large angles, 2θ . 458, drop the coeffi cient (2.61 sin θ), which leaves us with a 
loss equivalent to the sudden expansion of Eq. (6.77). As seen, the formula is in 
reasonable agreement with the data from Ref. 16. The minimum loss lies in the region 
58 , 2θ , 158, which is the best geometry for an effi cient diffuser. For angles less 
than 58, the diffuser is too long and has too much friction. Angles greater than 158 
cause fl ow separation, resulting in poor pressure recovery. Professor Gordon  Holloway 
provided the writer a recent example, where an improved diffuser design reduced the 
power requirement of a wind tunnel by 40 percent (100 hp decrease!). We shall look 
again at diffusers in Sec. 6.11, using the data of Ref. 14.
 For a gradual contraction, the loss is very small, as seen from the following experi-
mental values [15]:

Contraction cone angle 2θ, deg 30 45 60

K for gradual contraction 0.02 0.04 0.07

References 15, 16, 43, and 46 contain additional data on minor losses.

EXAMPLE 6.16

Water, ρ 5 1.94 slugs/ft3 and ν 5 0.000011 ft2/s, is pumped between two reservoirs at 0.2 ft3/s 
through 400 ft of 2-in-diameter pipe and several minor losses, as shown in Fig. E6.16. The 
roughness ratio is ε/d 5 0.001. Compute the pump horsepower required.
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entrance

Open globe
valve
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400 ft of pipe, d =        ft

12-in
bend radius

Half-open
gate valve
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exit

Screwed
regular

90° elbow

z2 = 120 ft

z1 = 20 ft

2

1
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12
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Solution

Write the steady fl ow energy equation between sections 1 and 2, the two reservoir surfaces:

p1

ρg
1

V2
1

2g
1 z1 5 a p2

ρg
1

V2
2

2g
1 z2b 1 hf 1 a hm 2 hp

where hp is the head increase across the pump. But since p1 5 p2 and V1 5 V2 < 0, solve 
for the pump head:

 hp 5 z2 2 z1 1 hf 1a hm 5 120 ft 2 20 ft 1
V2

2g
 a fL

d
1a Kb (1)

Now with the fl ow rate known, calculate

V 5
Q

A
5

0.2 ft3/s
1
4π( 2

12 ft)2 5 9.17 ft/s

Now list and sum the minor loss coeffi cients:

 Loss K

Sharp entrance (Fig. 6.21) 0.5
Open globe valve (2 in, Table 6.5) 6.9
12-in bend (Fig. 6.20) 0.25
Regular 908 elbow (Table 6.5) 0.95
Half-closed gate valve (from Fig. 6.18b) 3.8
Sharp exit (Fig. 6.21)  1.0
  S K 5 13.4

Calculate the Reynolds number and pipe friction factor:

Red 5
Vd

ν
5

9.17( 2
12)

0.000011
5 139,000

For ε/d 5 0.001, from the Moody chart read f 5 0.0216. Substitute into Eq. (1):

 hp 5 100 ft 1
(9.17 ft /s)2

2(32.2 ft /s2)
c 0.0216(400)

2
12

1 13.4 d
 5 100 ft 1 85 ft 5 185 ft pump head

The pump must provide a power to the water of

P 5 ρgQhp 5 31.94(32.2) lbf/ft3 4 (0.2 ft3/s) (185 ft) < 2300 ft # lbf/s

The conversion factor is 1 hp 5 550 ft ? lbf/s. Therefore

 P 5
2300

550
5 4.2 hp Ans.

Allowing for an effi ciency of 70 to 80 percent, a pump is needed with an input of about 6 hp.

Laminar Flow Minor Losses  The data in Table 6.5 are for turbulent fl ow in fi ttings. If the fl ow is laminar, a dif-
ferent form of loss occurs, which is proportional to V, not V 2. By analogy with Eqs. 
(6.12) for Poiseuille fl ow, the laminar minor loss takes the form

Klam 5
¢ploss d

μV
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Laminar minor losses are just beginning to be studied, due to increased interest in 
micro- and nano-fl ows in tubes. They can be substantial, comparable to the Poiseuille 
loss. Professor Bruce Finlayson, of the University of Washington, kindly provided the 
writer with new data in the following table:
 Laminar Minor Loss Coeffi cients Klam in Tube Fittings for 1 # Red # 10 [60]

 Type of fi tting Klam

458 bend, long radius 0.2
908 bend, short radius 0.5
908 bend, long radius 0.36
2:1 pipe contraction 7.3
3:1 pipe contraction 8.6
4:1 pipe contraction 9.0
2:1 pipe expansion 3.1
3:1 pipe expansion 4.1
4:1 pipe expansion 4.5

For the bends in the table, Klam is the excess loss after calculating Poiseuille fl ow 
around the centerline of the bend. For the contractions and expansion, Klam is based 
upon the velocity in the smaller section.

6.10 Multiple-Pipe Systems5  If you can solve the equations for one-pipe systems, you can solve them all; but when 
systems contain two or more pipes, certain basic rules make the calculations very 
smooth. Any resemblance between these rules and the rules for handling electric 
circuits is not coincidental.
 Figure 6.24 shows three examples of multiple-pipe systems.

Pipes in Series  The fi rst is a set of three (or more) pipes in series. Rule 1 is that the fl ow rate is the 
same in all pipes:

 Q1 5 Q2 5 Q3 5 const (6.80)

or V1d
2
1 5 V2d

2
2 5 V3d

2
3 (6.81)

Rule 2 is that the total head loss through the system equals the sum of the head loss 
in each pipe:

 ¢hASB 5 ¢h1 1 ¢h2 1 ¢h3 (6.82)

In terms of the friction and minor losses in each pipe, we could rewrite this as

¢hASB 5
V2

1

2g
 a f1L1

d1
1 a K1b 1

V2
2

2g
 a f2L2

d2
1 a K2b

 1
V2

3

2g
 a f3L3

d3
1a K3b (6.83)

and so on for any number of pipes in the series. Since V2 and V3 are proportional to 
V1 from Eq. (6.81), Eq. (6.83) is of the form

 ¢hASB 5
V2

1

2g
 (α0 1 α1 f1 1 α2 f2 1 α3 f3) (6.84)

5This section may be omitted without loss of continuity.
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Fig. 6.24 Examples of multiple-
pipe systems: (a) pipes in series; 
(b) pipes in parallel; (c) the three-
reservoir junction problem.

where the αi are dimensionless constants. If the fl ow rate is given, we can evaluate 
the right-hand side and hence the total head loss. If the head loss is given, a little 
iteration is needed, since f1, f2, and f3 all depend on V1 through the Reynolds number. 
Begin by calculating f1, f2, and f3, assuming fully rough fl ow, and the solution for V1 
will converge with one or two iterations.

EXAMPLE 6.17

Given is a three-pipe series system, as in Fig. 6.24a. The total pressure drop is pA 2 pB 5 
150,000 Pa, and the elevation drop is zA 2 zB 5 5 m. The pipe data are

 Pipe L, m d, cm ε, mm ε/d

 1 100 8 0.24 0.003
 2 150 6 0.12 0.002
 3  80 4 0.20 0.005

The fl uid is water, ρ 5 1000 kg/m3 and ν 5 1.02 3 1026 m2/s. Calculate the fl ow rate 
Q in m3/h through the system.



Solution

The total head loss across the system is

¢hASB 5
pA 2 pB

ρg
1 zA 2 zB 5

150,000

1000(9.81)
1 5 m 5 20.3 m

From the continuity relation (6.84) the velocities are

V2 5
d2

1

d2
2

V1 5
16

9
V1    V3 5

d2
1

d2
3

V1 5 4V1

and Re2 5
V2d2

V1d1
 Re1 5

4

3
Re1     Re3 5 2Re1 

Neglecting minor losses and substituting into Eq. (6.83), we obtain

¢hASB 5
V2

1

2g
c 1250f1 1 2500 a16

9
b2 

f2 1 2000(4)2f3 d
or 20.3 m 5

V2
1

2g
 (1250f1 1 7900f2 1 32,000f3) (1)

This is the form that was hinted at in Eq. (6.84). It seems to be dominated by the third pipe 
loss 32,000f3. Begin by estimating f1, f2, and f3 from the Moody-chart fully rough regime:

f1 5 0.0262    f2 5 0.0234    f3 5 0.0304

Substitute in Eq. (1) to fi nd V2
1 < 2g(20.3)/(33 1 185 1 973). The fi rst estimate thus is V1 5 

0.58 m/s, from which

Re1 < 45,400    Re2 5 60,500    Re3 5 90,800

Hence, from the Moody chart,

f1 5 0.0288    f2 5 0.0260    f3 5 0.0314

Substitution into Eq. (1) gives the better estimate

V1 5 0.565 m/s    Q 5 1
4πd2

1V1 5 2.84 3 1023 m3/s

or  Q 5 10.2 m3/h Ans.

A second iteration gives Q 5 10.22 m3/h, a negligible change.

Pipes in Parallel  The second multiple-pipe system is the parallel fl ow case shown in Fig. 6.24b. Here the 
pressure drop is the same in each pipe, and the total fl ow is the sum of the individual fl ows:

 ¢hASB 5 ¢h1 5 ¢h2 5 ¢h3 (6.85a)

 Q 5 Q1 1 Q2 1 Q3 (6.85b)

If the total head loss is known, it is straightforward to solve for Qi in each pipe and 
sum them, as will be seen in Example 6.18. The reverse problem, of determining SQi 
when hf is known, requires iteration. Each pipe is related to hf by the Moody relation 
hf 5 f(L/d)(V2/2g) 5 fQ2/C, where C 5 π2gd5/8L. Thus each pipe has nearly quadratic 
nonlinear parallel resistance, and head loss is related to total fl ow rate by

 hf 5
Q2

(g1Ci/fi)
2  where Ci 5

π2gdi 
5

8Li
 (6.86)
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Since the fi vary with Reynolds number and roughness ratio, one begins Eq. (6.86) by 
guessing values of fi (fully rough values are recommended) and calculating a fi rst estimate 
of hf. Then each pipe yields a fl ow-rate estimate Qi < (Cihf/fi)

1/2 and hence a new Reynolds 
number and a better estimate of fi. Then repeat Eq. (6.86) to convergence.
 It should be noted that both of these parallel-pipe cases—fi nding either SQ or 
hf  —are easily solved by Excel if reasonable guesses are given.

EXAMPLE 6.18

Assume that the same three pipes in Example 6.17 are now in parallel with the same total 
head loss of 20.3 m. Compute the total fl ow rate Q, neglecting minor losses.

Solution

From Eq. (6.85a) we can solve for each V separately:

 20.3 m 5
V2

1

2g
 1250f1 5

V2
2

2g
 2500f2 5

V2
3

2g
 2000f3 (1)

Guess fully rough fl ow in pipe 1: f1 5 0.0262, V1 5 3.49 m/s; hence Re1 5 V1d1/ν 5 273,000. 
From the Moody chart read f1 5 0.0267; recompute V1 5 3.46 m/s, Q1 5 62.5 m3/h.
 Next guess for pipe 2: f2 < 0.0234, V2 < 2.61 m/s; then Re2 5 153,000, and hence 
f2 5 0.0246, V2 5 2.55 m/s, Q2 5 25.9 m3/h.
 Finally guess for pipe 3: f3 < 0.0304, V3 < 2.56 m/s; then Re3 5 100,000, and hence 
f3 5 0.0313, V3 5 2.52 m/s, Q3 5 11.4 m3/h.
 This is satisfactory convergence. The total fl ow rate is

 Q 5 Q1 1 Q2 1 Q3 5 62.5 1 25.9 1 11.4 5 99.8 m3/h Ans.

These three pipes carry 10 times more fl ow in parallel than they do in series.
 This example may be solved by Excel iteration using the Colebrook-formula procedure 
outlined in Ex. 6.9. Each pipe is a separate iteration of friction factor, Reynolds number, and 
fl ow rate. The pipes are rough, so only one iteration is needed. Here are the Excel results:

 A B C D E F

   Ex. 6.18 2 Pipe 1

 Re1 (ε/d )1 V1 2 m/s Q1 2 m3/h f1 f1-guess

1 313053 0.003 3.991 72.2 0.0267 0.0200
2 271100 0.003 3.457 62.5 0.0267 0.0267

   Ex. 6.18 2 Pipe 2

 Re2 (ε/d)2 V2 2 m/s Q2 2 m3/h f2 f2-guess

1 166021 0.002 2.822 28.7 0.0246 0.0200
2 149739 0.002 2.546 25.9 0.0246 0.0246

   Ex. 6.18 2 Pipe 3

 Re3 (ε/d)3 V3 2 m/s Q3 2 m3/h f3 f3-guess

1 123745 0.005 3.155 14.3 0.0313 0.0200
2  98891 0.005 2.522 11.4 0.0313 0.0313

Thus, as in the hand calculations, the total fl ow rate 5 62.5 + 25.9 + 11.4 5 99.8 m3/h. Ans.



Three-Reservoir Junction  Consider the third example of a three-reservoir pipe junction, as in Fig. 6.24c. If all 
fl ows are considered positive toward the junction, then

 Q1 1 Q2 1 Q3 5 0 (6.87)

which obviously implies that one or two of the fl ows must be away from the junction. 
The pressure must change through each pipe so as to give the same static pressure pJ 
at the junction. In other words, let the HGL at the junction have the elevation

hJ 5 zJ 1
pJ

ρg

where pJ is in gage pressure for simplicity. Then the head loss through each, assuming 
p1 5 p2 5 p3 5 0 (gage) at each reservoir surface, must be such that

 ¢h1 5
V2

1

2g
 
f1L1

d1
5 z1 2 hJ

  ¢h2 5
V2

2

2g
 
f2L2

d2
5 z2 2 hJ (6.88)

 ¢h3 5
V2

3

2g
 
f3L3

d3
5 z3 2 hJ

We guess the position hJ and solve Eqs. (6.88) for V1, V2, and V3 and hence Q1, Q2, 
and Q3, iterating until the fl ow rates balance at the junction according to Eq. (6.87). 
If we guess hJ too high, the sum Q1 1 Q2 1 Q3 will be negative and the remedy is 
to reduce hJ, and vice versa.

EXAMPLE 6.19

Take the same three pipes as in Example 6.17, and assume that they connect three reservoirs 
at these surface elevations

 z1 5 20 m  z2 5 100 m  z3 5 40 m

Find the resulting fl ow rates in each pipe, neglecting minor losses.

Solution

As a fi rst guess, take hJ equal to the middle reservoir height, z3 5 hJ 5 40 m. This saves one 
calculation (Q3 5 0) and enables us to get the lay of the land:

 Reservoir hJ, m zi 2 hJ, m fi Vi, m/s Qi, m
3/h Li/di

 1 40 220 0.0267 23.43 262.1 1250
 2 40 60 0.0241 4.42 45.0 2500
 3 40 0  0 0 2000
      SQ 5 217.1
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Since the sum of the fl ow rates toward the junction is negative, we guessed hJ too high. 
Reduce hJ to 30 m and repeat:

 Reservoir hJ, m zi 2 hJ, m fi Vi, m/s Qi, m
3/h

 1 30 210 0.0269 22.42 243.7
 2 30 70 0.0241 4.78 48.6
 3 30 10 0.0317 1.76 8.0
 SQ 5 12.9

This is positive SQ, and so we can linearly interpolate to get an accurate guess: hJ < 34.3 m. 
Make one fi nal list:

 Reservoir hJ, m zi 2 hJ, m fi Vi, m/s Qi, m
3/h

 1 34.3 214.3 0.0268 22.90 252.4
 2 34.3 65.7 0.0241 4.63 47.1
 3  34.3 5.7 0.0321 1.32 6.0
 SQ 5 0.7

This is close enough; hence we calculate that the fl ow rate is 52.4 m3/h toward reservoir 3, 
balanced by 47.1 m3/h away from reservoir 1 and 6.0 m3/h away from reservoir 3.
 One further iteration with this problem would give hJ 5 34.53 m, resulting in 
Q1 5 252.8, Q2 5 47.0, and Q3 5 5.8 m3/h, so that SQ 5 0 to three-place accuracy. Peda-
gogically speaking, we would then be exhausted.

Pipe Networks  The ultimate case of a multipipe system is the piping network illustrated in 
Fig. 6.25. This might represent a water supply system for an apartment or subdivision 
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or even a city. This network is quite complex algebraically but follows the same 
basic rules:

1. The net fl ow into any junction must be zero.

2. The net pressure change around any closed loop must be zero. In other words, 
the HGL at each junction must have one and only one elevation.

3. All pressure changes must satisfy the Moody and minor-loss friction correlations.

By supplying these rules to each junction and independent loop in the network, one obtains 
a set of simultaneous equations for the fl ow rates in each pipe leg and the HGL (or pres-
sure) at each junction. Solution may then be obtained by numerical iteration, as fi rst 
developed in a hand calculation technique by Prof. Hardy Cross in 1936 [17]. Computer 
solution of pipe network problems is now quite common and is covered in at least one 
specialized text [18]. Network analysis is quite useful for real water distribution systems 
if well calibrated with the actual system head loss data.

6.11 Experimental Duct Flows: 
Diffuser Performance6

 The Moody chart is such a great correlation for tubes of any cross section with any 
roughness or fl ow rate that we may be deluded into thinking that the world of internal 
fl ow prediction is at our feet. Not so. The theory is reliable only for ducts of constant 
cross section. As soon as the section varies, we must rely principally on experiment 
to determine the fl ow properties. As mentioned many times before, experimentation 
is a vital part of fl uid mechanics.
 Literally thousands of papers in the literature report experimental data for specifi c 
internal and external viscous fl ows. We have already seen several examples:

1. Vortex shedding from a cylinder (Fig. 5.2).

2. Drag of a sphere and a cylinder (Fig. 5.3).

3. Hydraulic model of a dam spillway (Fig. 5.9).

4. Rough-wall pipe fl ows (Fig. 6.12).

5. Secondary fl ow in ducts (Fig. 6.16).

6. Minor duct loss coeffi cients (Sec. 6.9).

Chapter 7 will treat a great many more external fl ow experiments, especially in 
Sec. 7.6. Here we shall show data for one type of internal fl ow, the diffuser.

Diffuser Performance  A diffuser, shown in Fig. 6.26a and b, is an expansion or area increase intended to 
reduce velocity in order to recover the pressure head of the fl ow. Rouse and Ince [6] 
relate that it may have been invented by customers of the early Roman (about 100 
a.d.) water supply system, where water fl owed continuously and was billed according 
to pipe size. The ingenious customers discovered that they could increase the fl ow 
rate at no extra cost by fl aring the outlet section of the pipe.
 Engineers have always designed diffusers to increase pressure and reduce kinetic 
energy of ducted fl ows, but until about 1950, diffuser design was a combination of art, 
luck, and vast amounts of empiricism. Small changes in design parameters caused large 
changes in performance. The Bernoulli equation seemed highly suspect as a useful tool.

6This section may be omitted without loss of continuity.
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 Neglecting losses and gravity effects, the incompressible Bernoulli equation 
 predicts that

 p 1 1
2ρV2 5 p0 5 const (6.89)

where p0 is the stagnation pressure the fl uid would achieve if the fl uid were slowed 
to rest (V 5 0) without losses.
 The basic output of a diffuser is the pressure-recovery coeffi cient Cp, defi ned as

 Cp 5
pe 2 pt

p0t 2 pt
 (6.90)

where subscripts e and t mean the exit and the throat (or inlet), respectively. Higher 
Cp means better performance.
 Consider the fl at-walled diffuser in Fig. 6.26a, where section 1 is the inlet 
and  section 2 the exit. Application of Bernoulli’s equation (6.89) to this diffuser 
 predicts that

p01 5 p1 1 1
2ρV1

2 5 p2 1 1
2ρV2

2 5 p02

or Cp,frictionless 5 1 2 aV2

V1
b2

 (6.91)

W1 2θ W2

2

L

(a)

(b)

L

D De

Throat
Exit

L
W1

100

70

40

20

10

7

4

2

1
1 2 4 7 10 20 40 100

Transitory
stall Maximum

unsteadiness

2 
  ,

 d
eg

re
es

Cp  max

c
b

Jet flow

θ

(c)

c

No
stall a

a

b

Bistable
steady stall

1
b

2θ

Fig. 6.26 Diffuser geometry and typical fl ow regimes: (a) geometry of a fl at-walled diffuser; 
(b) geometry of a conical diffuser; (c) fl at diffuser stability map. (From Ref. 14, by permission 
of Creare, Inc.)



6.11  Experimental Duct Flows: Diffuser Performance 397

Meanwhile, steady one-dimensional continuity would require that

 Q 5 V1A1 5 V2A2 (6.92)

Combining (6.91) and (6.92), we can write the performance in terms of the area ratio 
AR 5 A2/A1, which is a basic parameter in diffuser design:

 Cp,frictionless 5 1 2 (AR)22 (6.93)

A typical design would have AR 5 5:1, for which Eq. (6.93) predicts Cp 5 0.96, or 
nearly full recovery. But, in fact, measured values of Cp for this area ratio [14] are 
only as high as 0.86 and can be as low as 0.24.
 The basic reason for the discrepancy is fl ow separation, as sketched in Fig. 6.27b. 
The increasing pressure in the diffuser is an unfavorable gradient (Sec. 7.5), which 
causes the viscous boundary layers to break away from the walls and greatly reduces 
the performance. Computational fl uid dynamics (CFD) can now predict this 
behavior.
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Fig. 6.27 Diffuser performance: 
(a) ideal pattern with good 
performance; (b) actual measured 
pattern with boundary layer 
separation and resultant poor 
performance.
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 As an added complication to boundary layer separation, the fl ow patterns in a dif-
fuser are highly variable and were considered mysterious and erratic until 1955, when 
Kline revealed the structure of these patterns with fl ow visualization techniques in a 
simple water channel.
 A complete stability map of diffuser fl ow patterns was published in 1962 by 
Fox and Kline [21], as shown in Fig. 6.26c. There are four basic regions. Below 
line aa there is steady viscous fl ow, no separation, and moderately good perfor-
mance. Note that even a very short diffuser will separate, or stall, if its half-angle 
is greater than 108.
 Between lines aa and bb is a transitory stall pattern with strongly unsteady fl ow. 
Best performance (highest Cp) occurs in this region. The third pattern, between bb 
and cc, is steady bistable stall from one wall only. The stall pattern may fl ip-fl op from 
one wall to the other, and performance is poor.
 The fourth pattern, above line cc, is jet fl ow, where the wall separation is so gross 
and pervasive that the mainstream ignores the walls and simply passes on through at 
nearly constant area. Performance is extremely poor in this region.
 Dimensional analysis of a fl at-walled or conical diffuser shows that Cp should 
depend on the following parameters:

1. Any two of the following geometric parameters:

a. Area ratio AR 5 A2/A1 or (De/D)2

b. Divergence angle 2θ
c. Slenderness L/W1 or L/D

2. Inlet Reynolds number Ret 5 V1W1/ν or Ret 5 V1D/ν

3. Inlet Mach number Mat 5 V1/a1

4. Inlet boundary layer blockage factor Bt 5 ABL/A1, where ABL is the wall area 
blocked, or displaced, by the retarded boundary layer fl ow in the inlet (typically 
Bt varies from 0.03 to 0.12)

 A fl at-walled diffuser would require an additional shape parameter to describe its 
cross section:

5. Aspect ratio AS 5 b/W1

Even with this formidable list, we have omitted fi ve possible important effects: inlet 
turbulence, inlet swirl, inlet profi le vorticity, superimposed pulsations, and  down-
stream obstruction, all of which occur in practical machinery applications.
 The three most important parameters are AR, θ, and B. Typical performance maps 
for diffusers are shown in Fig. 6.28. For this case of 8 to 9 percent blockage, both 
the fl at-walled and conical types give about the same maximum performance, Cp 5 
0.70, but at different divergence angles (98 fl at versus 4.58 conical). Both types fall 
far short of the Bernoulli estimates of Cp 5 0.93 (fl at) and 0.99 (conical), primarily 
because of the blockage effect.
 From the data of Ref. 14 we can determine that, in general, performance decreases 
with blockage and is approximately the same for both fl at-walled and conical dif-
fusers, as shown in Table 6.6. In all cases, the best conical diffuser is 10 to 80 
percent longer than the best fl at-walled design. Therefore, if length is limited in the 
design, the fl at-walled design will give the better performance depending on duct 
cross section.
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Fig. 6.28a Typical performance 
maps for fl at-wall and conical 
diffusers at similar operating 
conditions: fl at wall. 
Source: From P. W. Runstadler, Jr., et 
al., “Diffuser Data Book,” Crème Inc. 
Tech. Note 186, Hanover, NH, 1975., by 
permission of Creare, Inc.

Table 6.6 Maximum Diffuser 
Performance Data [14]
Source: From P. W. Runstadler, Jr., 
et al., “Diffuser Data Book,” Crème 
Inc. Tech. Note 186, Hanover, NH, 1975.

 Flat-walled Conical
Inlet blockage
 Bt Cp,max L/W1 Cp,max L/d

0.02 0.86 18 0.83 20
0.04 0.80 18 0.78 22
0.06 0.75 19 0.74 24
0.08 0.70 20 0.71 26
0.10 0.66 18 0.68 28
0.12 0.63 16 0.65 30

 The experimental design of a diffuser is an excellent example of a successful 
attempt to minimize the undesirable effects of adverse pressure gradient and fl ow 
separation.
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6.12 Fluid Meters  Almost all practical fl uid engineering problems are associated with the need for an 
accurate fl ow measurement. There is a need to measure local properties (velocity, 
pressure, temperature, density, viscosity, turbulent intensity), integrated properties 
(mass fl ow and volume fl ow), and global properties (visualization of the entire fl ow 
fi eld). We shall concentrate in this section on velocity and volume fl ow 
measurements.
 We have discussed pressure measurement in Sec. 2.10. Measurement of other ther-
modynamic properties, such as density, temperature, and viscosity, is beyond the 
scope of this text and is treated in specialized books such as Refs. 22 and 23. Global 
visualization techniques were discussed in Sec. 1.11 for low-speed fl ows, and the 
special optical techniques used in high-speed fl ows are treated in Ref. 34 of Chap. 1. 
Flow measurement schemes suitable for open-channel and other free-surface fl ows 
are treated in Chap. 10.

Local Velocity Measurements  Velocity averaged over a small region, or point, can be measured by several different 
physical principles, listed in order of increasing complexity and sophistication:
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Fig. 6.29 Eight common velocity 
meters: (a) three-cup anemometer; 
(b) Savonius rotor; (c) turbine 
mounted in a duct; (d) free-propeller 
meter; (e) hot-wire anemometer; 
(f) hot-fi lm anemometer; (g) pitot-
static tube; (h) laser-doppler 
anemometer.

1. Trajectory of fl oats or neutrally buoyant particles.

2. Rotating mechanical devices:

a. Cup anemometer.

b. Savonius rotor.

c. Propeller meter.

d. Turbine meter.

3. Pitot-static tube (Fig. 6.30).

4. Electromagnetic current meter.

5. Hot wires and hot fi lms.

6. Laser-doppler anemometer (LDA).

7. Particle image velocimetry (PIV).

Some of these meters are sketched in Fig. 6.29.
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Floats or Buoyant Particles. A simple but effective estimate of fl ow velocity can be 
found from visible particles entrained in the fl ow. Examples include fl akes on the surface 
of a channel fl ow, small neutrally buoyant spheres mixed with a liquid, or hydrogen 
bubbles. Sometimes gas fl ows can be estimated from the motion of entrained dust par-
ticles. One must establish whether the particle motion truly simulates the fl uid motion. 
Floats are commonly used to track the movement of ocean waters and can be designed 
to move at the surface, along the bottom, or at any given depth [24]. Many offi cial tidal 
current charts [25] were obtained by releasing and timing a fl oating spar attached to a 
length of string. One can release whole groups of spars to determine a fl ow pattern.

Rotating Sensors. The rotating devices of Fig. 6.29a to d can be used in either gases 
or liquids, and their rotation rate is approximately proportional to the fl ow velocity. 
The cup anemometer (Fig. 6.29a) and Savonius rotor (Fig. 6.29b) always rotate the 
same way, regardless of fl ow direction. They are popular in atmospheric and oceano-
graphic applications and can be fi tted with a direction vane to align themselves with 
the fl ow. The ducted-propeller (Fig. 6.29c) and free-propeller (Fig. 6.29d) meters must 
be aligned with the fl ow parallel to their axis of rotation. They can sense reverse fl ow 
because they will then rotate in the opposite direction. All these rotating sensors can 
be attached to counters or sensed by electromagnetic or slip-ring devices for either a 
continuous or a digital reading of fl ow velocity. All have the disadvantage of being 
relatively large and thus not representing a “point.”

Pitot-Static Tube. A slender tube aligned with the fl ow (Figs. 6.29g and 6.30) can 
measure local velocity by means of a pressure difference. It has sidewall holes to 
measure the static pressure ps in the moving stream and a hole in the front to measure 
the stagnation pressure p0, where the stream is decelerated to zero velocity. Instead 
of measuring p0 or ps separately, it is customary to measure their difference with, say, 
a transducer, as in Fig. 6.30.
 If ReD . 1000, where D is the probe diameter, the fl ow around the probe is nearly 
frictionless and Bernoulli’s relation, Eq. (3.54), applies with good accuracy. For 
incompressible fl ow

ps 1 1
2ρV2 1 ρgzs < p0 1 1

2ρ(0)2 1 ρgz0
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Fig. 6.30 Pitot-static tube for 
combined measurement of static 
and stagnation pressure in a 
moving stream.
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Assuming that the elevation pressure difference ρg(zs 2 z0) is negligible, this reduces to

 V < c2(p0 2 ps)

ρ
d 1/2

 (6.94)

This is the Pitot formula, named after the French engineer, Henri de Pitot, who 
designed the device in 1732.
 The primary disadvantage of the pitot tube is that it must be aligned with the fl ow 
direction, which may be unknown. For yaw angles greater than 58, there are substantial 
errors in both the p0 and ps measurements, as shown in Fig. 6.30. The pitot-static tube 
is useful in liquids and gases; for gases a compressibility correction is necessary if the 
stream Mach number is high (Chap. 9). Because of the slow response of the fl uid-fi lled 
tubes leading to the pressure sensors, it is not useful for unsteady fl ow measurements. 
It does resemble a point and can be made small enough to measure, for example, blood 
fl ow in arteries and veins. It is not suitable for low-velocity measurement in gases 
because of the small pressure differences developed. For example, if V 5 1 ft/s in 
standard air, from Eq. (6.94) we compute p0 2 p equal to only 0.001 lbf/ft2 (0.048 Pa). 
This is beyond the resolution of most pressure gages.

Electromagnetic Meter. If a magnetic fi eld is applied across a conducting fl uid, the fl uid 
motion will induce a voltage across two electrodes placed in or near the fl ow. The 
electrodes can be streamlined or built into the wall, and they cause little or no fl ow 
resistance. The output is very strong for highly conducting fl uids such as liquid metals. 
Seawater also gives good output, and electromagnetic current meters are in common 
use in oceanography. Even low-conductivity fresh water can be measured by amplifying 
the output and insulating the electrodes. Commercial instruments are available for most 
liquid fl ows but are relatively costly. Electromagnetic fl owmeters are treated in Ref. 26.

Hot-Wire Anemometer. A very fi ne wire (d 5 0.01 mm or less) heated between two 
small probes, as in Fig. 6.29e, is ideally suited to measure rapidly fl uctuating fl ows 
such as the turbulent boundary layer. The idea dates back to work by L. V. King in 
1914 on heat loss from long, thin cylinders. If electric power is supplied to heat the 
cylinder, the loss varies with fl ow velocity across the cylinder according to King’s law

 q 5 I2R < a 1 b(ρV)n (6.95)

where n < 1
3 at very low Reynolds numbers and equals 1

2 at high Reynolds numbers. 
The hot wire normally operates in the high-Reynolds-number range but should be 
calibrated in each situation to fi nd the best-fi t a, b, and n. The wire can be operated 
either at constant current I, so that resistance R is a measure of V, or at constant 
resistance R (constant temperature), with I a measure of velocity. In either case, the 
output is a nonlinear function of V, and the equipment should contain a linearizer to 
produce convenient velocity data. Many varieties of commercial hot-wire equipment 
are available, as are do-it-yourself designs [27]. Excellent detailed discussions of the 
hot wire are given in Ref. 28.
 Because of its frailty, the hot wire is not suited to liquid fl ows, whose high density 
and entrained sediment will knock the wire right off. A more stable yet quite sensitive 
alternative for liquid fl ow measurement is the hot-fi lm anemometer (Fig. 6.29f). 
A thin metallic fi lm, usually platinum, is plated onto a relatively thick support, which 
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can be a wedge, a cone, or a cylinder. The operation is similar to the hot wire. The 
cone gives best response but is liable to error when the fl ow is yawed to its axis.
 Hot wires can easily be arranged in groups to measure two- and three-dimensional 
velocity components.

Laser-Doppler Anemometer. In the LDA a laser beam provides highly focused, coherent 
monochromatic light that is passed through the fl ow. When this light is scattered from a 
moving particle in the fl ow, a stationary observer can detect a change, or doppler shift, 
in the frequency of the scattered light. The shift Df is proportional to the velocity of the 
particle. There is essentially zero disturbance of the fl ow by the laser.
 Figure 6.29h shows the popular dual-beam mode of the LDA. A focusing device 
splits the laser into two beams, which cross the fl ow at an angle θ. Their intersection, 
which is the measuring volume or resolution of the measurement, resembles an ellip-
soid about 0.5 mm wide and 0.1 mm in diameter. Particles passing through this 
measuring volume scatter the beams; they then pass through receiving optics to a 
photodetector, which converts the light to an electric signal. A signal processor then 
converts electric frequency to a voltage that can be either displayed or stored. If l is 
the wavelength of the laser light, the measured velocity is given by

 V 5
λ ¢f

2 sin (θ/2)
 (6.96)

Multiple components of velocity can be detected by using more than one photodetec-
tor and other operating modes. Either liquids or gases can be measured as long as 
scattering particles are present. In liquids, normal impurities serve as scatterers, but 
gases may have to be seeded. The particles may be as small as the wavelength of the 
light. Although the measuring volume is not as small as with a hot wire, the LDA is 
capable of measuring turbulent fl uctuations.
 The advantages of the LDA are as follows:

1. No disturbance of the fl ow.

2. High spatial resolution of the fl ow fi eld.

3. Velocity data that are independent of the fl uid thermodynamic properties.

4. An output voltage that is linear with velocity.

5. No need for calibration.

The disadvantages are that both the apparatus and the fl uid must be transparent to light 
and that the cost is high (a basic system shown in Fig. 6.29h begins at about $50,000).
 Once installed, an LDA can map the entire fl ow fi eld in minutest detail. To truly 
appreciate the power of the LDA, one should examine, for instance, the amazingly detailed 
three-dimensional fl ow profi les measured by Eckardt [29] in a high-speed centrifugal com-
pressor impeller. Extensive discussions of laser velocimetry are given in Refs. 38 and 39.

Particle Image Velocimetry. This popular new idea, called PIV for short, measures not 
just a single point but instead maps the entire fi eld of fl ow. An illustration was shown 
in Fig. 1.18b. The fl ow is seeded with neutrally buoyant particles. A planar laser light 
sheet across the fl ow is pulsed twice and photographed twice. If Dr is the particle 
displacement vector over a short time Dt, an estimate of its velocity is V < Dr/Dt. 
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A dedicated computer applies this formula to a whole cloud of particles and thus maps 
the fl ow fi eld. One can also use the data to calculate velocity gradient and vorticity 
fi elds. Since the particles all look alike, other cameras may be needed to identify them. 
Three-dimensional velocities can be measured by two cameras in a stereoscopic 
arrangement. The PIV method is not limited to stop-action. New high-speed cameras 
(up to 10,000 frames per second) can record movies of unsteady fl ow fi elds. For 
further details, see the monograph by M. Raffel [51].

EXAMPLE 6.20

The pitot-static tube of Fig. 6.30 uses mercury as a manometer fl uid. When it is placed in 
a water fl ow, the manometer height reading is h 5 8.4 in. Neglecting yaw and other errors, 
what is the fl ow velocity V in ft/s?

Solution

From the two-fl uid manometer relation (2.23b), with zA 5 z2, the pressure difference is related 
to h by

p0 2 ps 5 (γM 2 γw)h

Taking the specifi c weights of mercury and water from Table 2.1, we have

p0 2 ps 5 (846 2 62.4 lbf/ft3) 
8.4

12
ft 5 549 lbf/ft2

The density of water is 62.4/32.2 5 1.94 slugs/ft3. Introducing these values into the pitot-
static formula (6.97), we obtain

 V 5 c 2(549 lbf/ft2)

1.94 slugs/ft3 d 1/2

5 23.8 ft/s Ans.

Since this is a low-speed fl ow, no compressibility correction is needed.

Volume Flow Measurements  It is often desirable to measure the integrated mass, or volume fl ow, passing through a 
duct. Accurate measurement of fl ow is vital in billing customers for a given amount of 
liquid or gas passing through a duct. The different devices available to make these 
measurements are discussed in great detail in the ASME text on fl uid meters [30]. These 
devices split into two classes: mechanical instruments and head loss instruments.
 The mechanical instruments measure actual mass or volume of fl uid by trapping 
it and counting it. The various types of measurement are

1. Mass measurement

a. Weighing tanks

b. Tilting traps

2. Volume measurement

a. Volume tanks

b. Reciprocating pistons
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c. Rotating slotted rings

d. Nutating disc

e. Sliding vanes

f. Gear or lobed impellers

g. Reciprocating bellows

h. Sealed-drum compartments

The last three of these are suitable for gas fl ow measurement.
 The head loss devices obstruct the fl ow and cause a pressure drop, which is a 
measure of fl ux:

1. Bernoulli-type devices

a. Thin-plate orifi ce

b. Flow nozzle

c. Venturi tube

2. Friction loss devices

a. Capillary tube

b. Porous plug

The friction loss meters cause a large nonrecoverable head loss and obstruct the fl ow 
too much to be generally useful.
 Six other widely used meters operate on different physical principles:

1. Turbine meter

2. Vortex meter

3. Ultrasonic fl owmeter

4. Rotameter

5. Coriolis mass fl owmeter

6. Laminar fl ow element

Nutating Disc Meter. For measuring liquid volumes, as opposed to volume rates, the 
most common devices are the nutating disc and the turbine meter. Figure 6.31 shows 

C

B

A

D
E

Fig. 6.31 Cutaway sketch of 
a nutating disc fl uid meter. 
A: metered-volume chamber; 
B: nutating disc; C: rotating spindle; 
D: drive magnet; E: magnetic 
counter sensor. 
Source: Courtesy of Badger Meter, Inc., 
Milwaukee, Wisconsin.
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a cutaway sketch of a nutating disc meter, widely used in both water and gasoline 
delivery systems. The mechanism is clever and perhaps beyond the writer’s capabil-
ity to explain. The metering chamber is a slice of a sphere and contains a rotating 
disc set at an angle to the incoming fl ow. The fl uid causes the disc to nutate (spin 
eccentrically), and one revolution corresponds to a certain fl uid volume passing 
through. Total volume is obtained by counting the number of revolutions.

Turbine Meter. The turbine meter, sometimes called a propeller meter, is a freely 
rotating propeller that can be installed in a pipeline. A typical design is shown in 
Fig. 6.32a. There are fl ow straighteners upstream of the rotor, and the rotation is 

(a)

Rotor supports

Turbine
rotor

Magnetic
pulse 
pickup

Fig. 6.32 The turbine meter widely 
used in the oil and gas industry: 
(a) basic design; (b) the linearity 
curve is the measure of variation in 
the signal output across the 10% to 
100% nominal fl ow range of the 
meter. (Daniel Measurement and 
Control, Houston, TX.)
Source: (a) Daniel Industries of Fluke 
Calibration, Houston, TX. Flow rate %
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measured by electric or magnetic pickup of pulses caused by passage of a point 
on the rotor. The rotor rotation is approximately proportional to the volume fl ow 
in the pipe.
 Like the nutating disc, a major advantage of the turbine meter is that each pulse 
corresponds to a fi nite incremental volume of fl uid, and the pulses are digital and can 
be summed easily. Liquid fl ow turbine meters have as few as two blades and produce 
a constant number of pulses per unit fl uid volume over a 5:1 fl ow rate range with 
60.25 percent accuracy. Gas meters need many blades to produce suffi cient torque 
and are accurate to 61 percent.
 Since turbine meters are very individualistic, fl ow calibration is an absolute neces-
sity. A typical liquid meter calibration curve is shown in Fig. 6.32b. Researchers 
attempting to establish universal calibration curves have met with little practical suc-
cess as a result of manufacturing variabilities.
 Turbine meters can also be used in unconfi ned fl ow situations, such as winds or 
ocean currents. They can be compact, even microsize with two or three component 
directions. Figure 6.33 illustrates a handheld wind velocity meter that uses a seven-
bladed turbine with a calibrated digital output. The accuracy of this device is quoted 
at 62 percent.

Vortex Flowmeters. Recall from Fig. 5.2 that a bluff body placed in a uniform 
crossfl ow sheds alternating vortices at a nearly uniform Strouhal number 
St 5 fL/U, where U is the approach velocity and L is a characteristic body width. 
Since L and St are constant, this means that the shedding frequency is proportional 
to velocity:

 f 5 (const)(U) (6.97)

The vortex meter introduces a shedding element across a pipe fl ow and picks up the 
shedding frequency downstream with a pressure, ultrasonic, or heat transfer type of 
sensor. A typical design is shown in Fig. 6.34.

Fig. 6.33 A Commercial handheld 
wind velocity turbine meter. 
(Courtesy of Nielsen-Kellerman 
Company.)
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 The advantages of a vortex meter are as follows:

1. Absence of moving parts.

2. Accuracy to 61 percent over a wide fl ow rate range (up to 100:1).

3. Ability to handle very hot or very cold fl uids.

4. Requirement of only a short pipe length.

5. Calibration insensitive to fl uid density or viscosity.

For further details see Ref. 40.

Ultrasonic Flowmeters. The sound-wave analog of the laser velocimeter of Fig. 6.29h 
is the ultrasonic fl owmeter. Two examples are shown in Fig. 6.35. The pulse-type 
fl owmeter is shown in Fig. 6.35a. Upstream piezoelectric transducer A is excited with 
a short sonic pulse that propagates across the fl ow to downstream transducer B. The 
arrival at B triggers another pulse to be created at A, resulting in a regular pulse 
frequency fA. The same process is duplicated in the reverse direction from B to A, 
creating frequency fB. The difference fA 2 fB is proportional to the fl ow rate. 
Figure 6.35b shows a doppler-type arrangement, where sound waves from transmitter 
T are scattered by particles or contaminants in the fl ow to receiver R. Comparison of 
the two signals reveals a doppler frequency shift that is proportional to the fl ow rate. 
Ultrasonic meters are nonintrusive and can be directly attached to pipe fl ows in the 

Fig. 6.34 A vortex fl owmeter. 
(Courtesy of Invensys p/c.)
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fi eld (Fig. 6.35c). Their quoted uncertainty of 61 to 2 percent can rise to 65 percent 
or more due to irregularities in velocity profi le, fl uid temperature, or Reynolds num-
ber. For further details see Ref. 41.

Rotameter. The variable-area transparent rotameter of Fig. 6.36 has a fl oat that, under 
the action of fl ow, rises in the vertical tapered tube and takes a certain equilibrium 
position for any given fl ow rate. A student exercise for the forces on the fl oat would 
yield the approximate relation

 Q 5 Cd Aaa 2Wnet

Afloatρfluid
b1/2

 (6.98)

where Wnet is the float’s net weight in the fluid, Aa 5 Atube 2 Afloat is the annular 
area between the float and the tube, and Cd is a dimensionless discharge coeffi-
cient of order unity, for the annular constricted flow. For slightly tapered tubes, 
Aa varies nearly linearly with the float position, and the tube may be calibrated 
and marked with a flow rate scale, as in Fig. 6.36. The rotameter thus provides 
a readily visible measure of the flow rate. Capacity may be changed by using 
different-sized floats. Obviously the tube must be vertical, and the device does 
not give accurate readings for fluids containing high concentrations of bubbles 
or particles.

Coriolis Mass Flowmeter. Most commercial meters measure volume fl ow, with mass 
fl ow then computed by multiplying by the nominal fl uid density. An attractive 
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Fig. 6.35 Ultrasonic fl owmeters: (a) pulse type; (b) doppler-shift type (from Ref. 41); (c) a portable 
noninvasive installation (Courtesy of Thermo Polysonics, Houston, TX.)
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 modern alternative is a mass fl owmeter, which operates on the principle of the 
Coriolis acceleration associated with noninertial coordinates [recall Fig. 3.11 and 
the Coriolis term 2V 3 V in Eq. (3.48)]. The output of the meter is directly pro-
portional to mass fl ow.
 Figure 6.37 is a schematic of a Coriolis device, to be inserted into a piping 
system. The fl ow enters a loop arrangement, which is electromagnetically vibrated 
at a high natural frequency (amplitude < 1 mm and frequency > 100 Hz). The 
Coriolis effect induces a downward force on the loop entrance and an upward force 
on the loop exit, as shown. The loop twists, and the twist angle can be measured 
and is proportional to the mass fl ow through the tube. Accuracy is typically less 
than 1 percent of full scale.

Laminar Flow Element. In many, perhaps most, commercial fl owmeters, the fl ow 
through the meter is turbulent and the variation of fl ow rate with pressure drop is 
nonlinear. In laminar duct fl ow, however, Q is linearly proportional to Dp, as in 
Eq. (6.12): Q 5 [πR4/(8μL)] Dp. Thus a laminar fl ow sensing element is attractive, 
since its calibration will be linear. To ensure laminar fl ow for what otherwise 
would be a turbulent condition, all or part of the fl uid is directed into small pas-
sages, each of which has a low (laminar) Reynolds number. A honeycomb is a 
popular design.
 Figure 6.38 uses axial fl ow through a narrow annulus to create laminar fl ow. The 
theory again predicts Q~Dp, as in Eq. (6.70). However, the fl ow is very sensitive to 
passage size; for example, halving the annulus clearance increases Dp more than eight 
times. Careful calibration is thus necessary. In Fig. 6.38 the laminar fl ow concept has 
been synthesized into a complete mass fl ow system, with temperature control, dif-
ferential pressure measurement, and a microprocessor all self-contained. The accuracy 
of this device is rated at 60.2 percent.

Fig. 6.36 A commercial rotameter. 
The fl oat rises in the tapered tube to 
an equilibrium position, which is a 
measure of the fl uid fl ow rate. 
(Courtesy of Blue White Industries, 
Huntington Beach, CA.)

Flow in

Flow out

Fluid force

Fluid force Vibrating tube
Fig. 6.37 Schematic of a Coriolis 
mass fl owmeter.
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Bernoulli Obstruction Theory. Consider the generalized fl ow obstruction shown in 
Fig. 6.39. The fl ow in the basic duct of diameter D is forced through an obstruction 
of diameter d; the β ratio of the device is a key parameter:

 β 5
d

D
 (6.99)

After leaving the obstruction, the fl ow may neck down even more through a vena 
contracta of diameter D2 , d, as shown. Apply the Bernoulli and continuity equations 
for incompressible steady frictionless fl ow to estimate the pressure change:

Continuity: Q 5
π

4
D2V1 5

π

4
D2

2V2 

Bernoulli: p0 5 p1 1 1
2ρV1

2 5 p2 1 1
2ρV2

2 

Eliminating V1, we solve these for V2 or Q in terms of the pressure change p1 2 p2:

 
Q

A2
5 V2 < c 2(p1 2 p2)

ρ(1 2 D2
4/D4)

d 1/2

 (6.100)

But this is surely inaccurate because we have neglected friction in a duct fl ow, where 
we know friction will be very important. Nor do we want to get into the business of 
measuring vena contracta ratios D2/d for use in (6.100). Therefore we assume that 

Electrical connector

Microprocessor

Self-sealing pressure
measurement connection

Sintered
metallic filter

Flange connection

O-ring

Pressure-equalization chamber

O-ring-sealed pressure connection

Annular laminar-
flow path defined

by piston
and cylinder

Platinum resistance 
thermometer Piston-centering seat

Fig. 6.38 A complete fl owmeter 
system using a laminar fl ow 
element (in this case a narrow 
annulus). The fl ow rate is 
linearly proportional to the 
pressure drop. 
Source: Courtesy of Martin Girard, 
DH Instruments, Inc.
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D2/D < β and then calibrate the device to fi t the relation

Q 5 AtVt 5 Cd At c 2(p1 2 p2)/ρ

1 2 β4 d 1/2

 (6.101)

where subscript t denotes the throat of the obstruction. The dimensionless discharge 
coeffi cient Cd accounts for the discrepancies in the approximate analysis. By dimen-
sional analysis for a given design we expect

Cd 5 f (β, ReD)  where  ReD 5
V1D

ν
 (6.102)

The geometric factor involving β in (6.101) is called the velocity-of-approach 
factor:

E 5 (1 2 β4)21/2 (6.103)

One can also group Cd and E in Eq. (6.101) to form the dimensionless fl ow 
coeffi cient α:

 α 5 CdE 5
Cd

(1 2 β4)1/2 (6.104)
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Moody
loss

Nonrecoverable
head loss

HGL

EGL

p1 – p2

D V1

Deadwater
region

Dividing
streamline

V2  ≈  V1
D
D2

( )
2

Vena contracta D2

d =   Dβ 

Fig. 6.39 Velocity and pressure 
change through a generalized 
Bernoulli obstruction meter.
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Thus Eq. (6.101) can be written in the equivalent form

 Q 5 αAt c 2(p1 2 p2)

ρ
d 1/2

 (6.105)

Obviously the fl ow coeffi cient is correlated in the same manner:

 α 5 f (β, ReD) (6.106)

Occasionally one uses the throat Reynolds number instead of the approach Reynolds 
number:

 Red 5
Vt d

ν
5

ReD

β
 (6.107)

Since the design parameters are assumed known, the correlation of α from Eq. (6.106) 
or of Cd from Eq. (6.102) is the desired solution to the fl uid metering problem.
 The mass fl ow is related to Q by

 m
#

5 ρQ (6.108)

and is thus correlated by exactly the same formulas.
 Figure 6.40 shows the three basic devices recommended for use by the International 
Organization for Standardization (ISO) [31]: the orifi ce, nozzle, and venturi tube.

3
2 d

Flow

d 0.6 d

d

t2 < 13 mm

t1 < 0.15 D

(a)

Flow
d

D

Bevel angle:
45° to 60°

Edge thickness:
0.005 D to 0.02 D

Plate thickness:
up to 0.05 D

(b)

Ellipse

2
D

Flow

0.7d

Throat tap

ISA 1932
nozzle shape

2
d

Conical
diffuser

  < 15°

(c)

θ

Fig. 6.40 Standard shapes for the 
three primary Bernoulli obstruction-
type meters: (a) long-radius nozzle; 
(b) thin-plate orifi ce; (c) venturi 
nozzle. (Based on data from the 
International Organization for 
Standardization.)
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Thin-Plate Orifi ce. The thin-plate orifi ce, Fig. 6.40b, can be made with β in the range 
of 0.2 to 0.8, except that the hole diameter d should not be less than 12.5 mm. To 
measure p1 and p2, three types of tappings are commonly used:

1. Corner taps where the plate meets the pipe wall.

2. D: 1
2D taps: pipe-wall taps at D upstream and 1

2D downstream.

3. Flange taps: 1 in (25 mm) upstream and 1 in (25 mm) downstream of the plate, 
regardless of the size D.

Types 1 and 2 approximate geometric similarity, but since the fl ange taps 3 do not, 
they must be correlated separately for every single size of pipe in which a fl ange-tap 
plate is used [30, 31].
 Figure 6.41 shows the discharge coeffi cient of an orifi ce with D: 1

2D or type 2 taps 
in the Reynolds number range ReD 5 104 to 107 of normal use. Although detailed 
charts such as Fig. 6.41 are available for designers [30], the ASME recommends use 
of the curve-fi t formulas developed by the ISO [31]. The basic form of the curve fi t 
is [42]

 Cd 5 f (β) 1 91.71β2.5ReD
20.75 1

0.09β4

1 2 β4 F1 2 0.0337β3F2 (6.109)

where f (β) 5 0.5959 1 0.0312β2.1 2 0.184β8
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Fig. 6.41 Discharge coeffi cient for a 
thin-plate orifi ce with D: 1

2D taps, 
plotted from Eqs. (6.109) and 
(6.110b).
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The correlation factors F1 and F2 vary with tap position:

Corner taps: F1 5 0  F2 5 0 (6.110a)

D: 12D taps: F1 5 0.4333  F2 5 0.47 (6.110b)

Flange taps: F2 5
1

D (in)
  F1 5 • 1

D (in)
  D . 2.3 in

0.4333  2.0 # D # 2.3 in
 (6.110c)

Note that the fl ange taps (6.110c), not being geometrically similar, use raw diameter 
in inches in the formula. The constants will change if other diameter units are used. 
We cautioned against such dimensional formulas in Example 1.4 and Eq. (5.17) and 
give Eq. (6.110c) only because fl ange taps are widely used in the United States.

Flow Nozzle. The fl ow nozzle comes in two types, a long-radius type shown in 
Fig. 6.40a and a short-radius type (not shown) called the ISA 1932 nozzle [30, 31]. 
The fl ow nozzle, with its smooth, rounded entrance convergence, practically elimi-
nates the vena contracta and gives discharge coeffi cients near unity. The nonrecover-
able loss is still large because there is no diffuser provided for gradual expansion.
 The ISO recommended correlation for long-radius-nozzle discharge coeffi cient is

 Cd < 0.9965 2 0.00653β1/2 a 106

ReD
b1/2

5 0.9965 2 0.00653 a 106

Red
b1/2

 (6.111)

The second form is independent of the β ratio and is plotted in Fig. 6.42. A similar 
ISO correlation is recommended for the short-radius ISA 1932 fl ow nozzle:

Cd < 0.9900 2 0.2262β4.1

 1 (0.000215 2 0.001125β 1 0.00249β4.7)a 106

ReD
b1.15

 (6.112)

Flow nozzles may have β values between 0.2 and 0.8.

1.00
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0.95
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Long-radius
nozzle (Red)

Classical
Herschel venturi (ReD)

Fig. 6.42 Discharge coeffi cient for 
long-radius nozzle and classical 
Herschel-type venturi.
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Venturi Meter. The third and fi nal type of obstruction meter is the venturi, named in 
honor of Giovanni Venturi (1746–1822), an Italian physicist who fi rst tested conical 
expansions and contractions. The original, or classical, venturi was invented by a U.S. 
engineer, Clemens Herschel, in 1898. It consisted of a 218 conical contraction, a 
straight throat of diameter d and length d, then a 78 to 158 conical expansion. The 
discharge coeffi cient is near unity, and the nonrecoverable loss is very small. Herschel 
venturis are seldom used now.
 The modern venturi nozzle, Fig. 6.40c, consists of an ISA 1932 nozzle entrance 
and a conical expansion of half-angle no greater than 158. It is intended to be operated 
in a narrow Reynolds number range of 1.5 3 105 to 2 3 106. Its discharge coeffi cient, 
shown in Fig. 6.43, is given by the ISO correlation formula

 Cd < 0.9858 2 0.196β4.5 (6.113)

It is independent of ReD within the given range. The Herschel venturi discharge varies 
with ReD but not with β, as shown in Fig. 6.42. Both have very low net losses.
 The choice of meter depends on the loss and the cost and can be illustrated by the 
following table:

 Type of meter Net head loss Cost

  Orifi ce Large Small
  Nozzle Medium Medium
  Venturi Small Large

As so often happens, the product of ineffi ciency and initial cost is approximately 
constant.
 The average nonrecoverable head losses for the three types of meters, expressed 
as a fraction of the throat velocity head V2

t /(2g), are shown in Fig. 6.44. The orifi ce 
has the greatest loss and the venturi the least, as discussed. The orifi ce and nozzle 

0.3 0.4 0.5 0.6 0.7 0.8
0.92

0.94

0.96

0.98

1.00

β

Cd

International
standards:

0.316 <    < 0.775
1.5 × 105 < ReD < 2.0 × 106

β

Fig. 6.43 Discharge coeffi cient for a 
venturi nozzle.
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simulate partially closed valves as in Fig. 6.18b, while the venturi is a very minor 
loss. When the loss is given as a fraction of the measured pressure drop, the orifi ce 
and nozzle have nearly equal losses, as Example 6.21 will illustrate.
 The other types of instruments discussed earlier in this section can also serve as 
fl owmeters if properly constructed. For example, a hot wire mounted in a tube can 
be calibrated to read volume fl ow rather than point velocity. Such hot-wire meters are 
commercially available, as are other meters modifi ed to use velocity instruments. For 
further details see Ref. 30.

Compressible Gas Flow Correction Factor. The orifi ce/nozzle/venturi formulas in this 
section assume incompressible fl ow. If the fl uid is a gas, and the pressure ratio (p2/
p1) is not near unity, a compressibility correction is needed. Equation (6.101) is rewrit-
ten in terms of mass fl ow and the upstream density ρ1:

 m
#

5 Cd Y At B
2ρ1(p1 2 p2)

1 2 β4   where  β 5
d

D
 (6.114)

The dimensionless expansion factor Y is a function of pressure ratio, β, and the type 
of meter. Some values are plotted in Fig. 6.45. The orifi ce, with its strong jet contrac-
tion, has a different factor from the venturi or the fl ow nozzle, which are designed to 
eliminate contraction.
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Fig. 6.44 Nonrecoverable head loss 
in Bernoulli obstruction meters. 
(Adapted from Ref. 30.)
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EXAMPLE 6.21

We want to meter the volume fl ow of water (ρ 5 1000 kg/m3, ν 5 1.02 3 1026 m2/s) 
moving through a 200-mm-diameter pipe at an average velocity of 2.0 m/s. If the differen-
tial pressure gage selected reads accurately at p1 2 p2 5 50,000 Pa, what size meter should 
be selected for installing (a) an orifi ce with D: 1

2D taps, (b) a long-radius fl ow nozzle, or 
(c) a venturi nozzle? What would be the nonrecoverable head loss for each design?

Solution

Here the unknown is the β ratio of the meter. Since the discharge coeffi cient is a complicated 
function of β, iteration will be necessary. We are given D 5 0.2 m and V1 5 2.0 m/s. The 
pipe-approach Reynolds number is thus

ReD 5
V1D

v
5

(2.0)(0.2)

1.02 3 1026 5 392,000

For all three cases [(a) to (c)] the generalized formula (6.105) holds:

 Vt 5
V1

β2 5 α c 2(p1 2 p2)

ρ
d 1/2

   α 5
Cd

(1 2 β4)1/2 (1)

where the given data are V1 5 2.0 m/s, ρ 5 1000 kg/m3, and Dp 5 50,000 Pa. Inserting these 
known values into Eq. (1) gives a relation between β and α:

 
2.0

β2 5 α c 2(50,000)

1000
d 1/2

    or    β2 5
0.2

α
 (2)

The unknowns are β (or α) and Cd. Parts (a) to (c) depend on the particular chart or formula 
needed for Cd 5 fcn(ReD, β). We can make an initial guess β < 0.5 and iterate to convergence.

Part (a) For the orifi ce with D: 1
2D taps, use Eq. (6.109) or Fig. 6.41. The iterative sequence is

β1 < 0.5, Cd1 < 0.604, α1 < 0.624, β2 < 0.566, Cd2 < 0.606, α2 < 0.640, β3 5 0.559

Sharp-edged orifices:
β = 0.2  0.5  0.7  0.8

β = 0.2  0.5  0.6  0.7  0.8
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Fig. 6.45 Compressible fl ow 
expansion factor Y for fl owmeters.



420 Chapter 6 Viscous Flow in Ducts

We have converged to three fi gures. The proper orifi ce diameter is

 d 5 βD 5 112 mm Ans. (a)

Part (b) For the long-radius fl ow nozzle, use Eq. (6.111) or Fig. 6.42. The iterative sequence is

β1 < 0.5, Cd1 < 0.9891, α1 < 1.022, β2 < 0.442, Cd2 < 0.9896, α2 < 1.009, β3 5 0.445

We have converged to three fi gures. The proper nozzle diameter is

 d 5 βD 5 89 mm Ans. (b)

Part (c) For the venturi nozzle, use Eq. (6.113) or Fig. 6.43. The iterative sequence is

β1 < 0.5, Cd1 < 0.977, α1 < 1.009, β2 < 0.445, Cd2 < 0.9807, α2 < 1.0004, β3 5 0.447

We have converged to three fi gures. The proper venturi diameter is

 d 5 βD 5 89 mm Ans. (c)

Comments: These meters are of similar size, but their head losses are not the same. From 
Fig. 6.44 for the three different shapes we may read the three K factors and compute

hm,orifice < 3.5 m   hm,nozzle < 3.6 m   hm,venturi < 0.8 m

The venturi loss is only about 22 percent of the orifi ce and nozzle losses.

Solution by Excel Iteration for the Flow Nozzle

Parts (a, b, c) were solved by hand, but Excel is ideal for these calculations. You may review this 
procedure from the instructions in Example 6.5. We need fi ve columns: Cd, calculated from Eq. 
(6.111), throat velocity Vt calculated from Dp, α as calculated from Eq. (6.104), and β calculated 
from the velocity ratio (V/Vt). The fi fth column is an initial guess for β, which is replaced in its 
next row by the newly computed β. Any initial β , 1 will do. Here we chose β 5 0.5 as in part 
(b) for the fl ow nozzle. Remember to use cell names, not symbols: in row 1, Cd 5 A1, Vt 5 B1, 
α 5 C1, and β 5 D1. The process converges rapidly, in only two or three iterations:

 Cd from   α 5  β 5
 Eq.(6.114) Vt 5 α(2Dp/r) Cd/(1 − β^4)^0.5  (V/Vt)^0.5 β-guess

  A B C D E

1  0.9891 10.216 1.0216 0.4425 0.5000
2 0.9896 10.091 1.0091 0.4452 0.4425
3 0.9895 10.096 1.0096 0.4451 0.4452
4  0.9895 10.096 1.0096 0.4451 0.4451

The fi nal answers for the long-radius fl ow nozzle are:

 α 5 1.0096    Cd 5 0.9895    β 5 0.4451 Ans. (b)

EXAMPLE 6.22

A long-radius nozzle of diameter 6 cm is used to meter airfl ow in a 10-cm-diameter pipe. 
Upstream conditions are p1 5 200 kPa and T1 5 1008C. If the pressure drop through the 
nozzle is 60 kPa, estimate the fl ow rate in m3/s.
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Solution

• Assumptions: The pressure drops 30 percent, so we need the compressibility factor Y, 
and Eq. (6.114) is applicable to this problem.

• Approach: Find ρ1 and Cd and apply Eq. (6.114) with β 5 6/10 5 0.6.
• Property values: Given p1 and T1, ρ1 5 p1/RT1 5 (200,000)/[287(100 1 273)] 5 1.87 

kg/m3. The downstream pressure is p2 5 200 2 60 5 140 kPa, hence p2/p1 5 0.7. At 
1008C, from Table A.2, the viscosity of air is 2.17 E-5 kg/m-s.

• Solution steps:  Initially apply Eq. (6.114) by guessing, from Fig. 6.42, that Cd < 0.98. 
From Fig. 6.45, for a nozzle with p2/p1 5 0.7 and β 5 0.6, read Y < 0.80. Then

m
#

5 Cd YAt B
2ρ1(p1 2 p2)

1 2 β4 < (0.98)(0.80) 
π

4
 (0.06 m)2 B

2(1.87 kg/m3)(60,000 Pa)

1 2 (0.6)
  

 < 1.13 
kg

s

 Now estimate Red, putting it in the convenient mass fl ow form:

Red 5
ρVd

μ
5

4 m
#

πμd
5

4(1.13 kg/s)

π(2.17 E-5 kg/m 2 s)(0.06 m)
< 1.11 E6

 Returning to Fig. 6.42, we could read a slightly better Cd < 0.99. Thus our fi nal estimate is

 m
#

< 1.14 kg/s Ans.

•  Comments: Figure 6.45 is not just a “chart” for engineers to use casually. It is based on 
the compressible fl ow theory of Chap. 9. There, we may reassign this example as a theory.

Summary  This chapter has been concerned with internal pipe and duct fl ows, which are prob-
ably the most common problems encountered in engineering fl uid mechanics. Such 
fl ows are very sensitive to the Reynolds number and change from laminar to transi-
tional to turbulent fl ow as the Reynolds number increases.
 The various Reynolds number regimes were outlined, and a semiempirical approach 
to turbulent fl ow modeling was presented. The chapter then made a detailed analysis 
of fl ow through a straight circular pipe, leading to the famous Moody chart (Fig. 6.13) 
for the friction factor. Possible uses of the Moody chart were discussed for fl ow rate 
and sizing problems, as well as the application of the Moody chart to noncircular 
ducts using an equivalent duct “diameter.” The addition of minor losses due to valves, 
elbows, fi ttings, and other devices was presented in the form of loss coeffi cients to 
be incorporated along with Moody-type friction losses. Multiple-pipe systems were 
discussed briefl y and were seen to be quite complex algebraically and appropriate for 
computer solution.
 Diffusers are added to ducts to increase pressure recovery at the exit of a system. 
Their behavior was presented as experimental data, since the theory of real diffusers 
is still not well developed. The chapter ended with a discussion of fl owmeters, espe-
cially the pitot-static tube and the Bernoulli obstruction type of meter. Flowmeters 
also require careful experimental calibration.
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Problems

Most of the problems herein are fairly straightforward. More 
diffi cult or open-ended assignments are labeled with an asterisk. 
Problems labeled with a computer icon  may require the use 
of a computer. The standard end-of-chapter problems P6.1 to 
P6.163 (categorized in the problem list here) are followed by 
word problems W6.1 to W6.4, fundamentals of engineering 
exam problems FE6.1 to FE6.15, comprehensive problems C6.1 
to C6.9, and design projects D6.1 and D6.2.

Problem Distribution

  Section Topic Problems

6.1 Reynolds number regimes  P6.1–P6.5
6.2 Internal and external fl ow  P6.6–P6.8
6.3 Head loss—friction factor  P6.9–P6.11
6.4 Laminar pipe fl ow  P6.12–P6.33
6.5 Turbulence modeling  P6.34–P6.40
6.6 Turbulent pipe fl ow  P6.41–P6.62
6.7 Flow rate and sizing problems  P6.63–P6.85
6.8 Noncircular ducts  P6.86–P6.98
6.9 Minor or local losses  P6.99–P6.110
6.10 Series and parallel pipe systems P6.111–P6.120
6.10 Three-reservoir and pipe network systems P6.121–P6.130
6.11 Diffuser performance P6.131–P6.134
6.12 The pitot-static tube P6.135–P6.139
6.12 Flowmeters: the orifi ce plate P6.140–P6.148
6.12 Flowmeters: the fl ow nozzle P6.149–P6.153
6.12 Flowmeters: the venturi meter P6.154–P6.159
6.12 Flowmeters: other designs P6.160–P6.161
6.12 Flowmeters: compressibility correction P6.162–P6.163

Reynolds number regimes

P6.1 An engineer claims that the fl ow of SAE 30W oil, at 208C, 
through a 5-cm-diameter smooth pipe at 1 million N/h, is 
laminar. Do you agree? A million newtons is a lot, so this 
sounds like an awfully high fl ow rate.

P6.2 The present pumping rate of crude oil through the Alaska 
Pipeline, with an ID of 48 in, is 550,000 barrels per day 
(1 barrel 5 42 U.S. gallons). (a) Is this a turbulent fl ow? 
(b) What would be the maximum rate if the fl ow were 
constrained to be laminar? Assume that Alaskan oil fi ts 
Fig. A.1 of the Appendix at 608C.

P6.3 The Keystone Pipeline in the chapter opener photo has a 
maximum proposed fl ow rate of 1.3 million barrels of 
crude oil per day. Estimate the Reynolds number and 
whether the fl ow is laminar. Assume that Keystone crude 
oil fi ts Fig. A.1 of the Appendix at 408C.

P6.4 For fl ow of SAE 30 oil through a 5-cm-diameter pipe, from 
Fig. A.1, for what fl ow rate in m3/h would we expect transi-
tion to turbulence at (a) 208C and (b) 1008C?

P6.5 In fl ow past a body or wall, early transition to turbulence 
can be induced by placing a trip wire on the wall across the 
fl ow, as in Fig. P6.5. If the trip wire in Fig. P6.5 is placed 
where the local velocity is U, it will trigger turbulence if 
Ud/ν 5 850, where d is the wire diameter [3, p. 388]. If the 
sphere diameter is 20 cm and transition is observed at 
ReD 5 90,000, what is the diameter of the trip wire in mm?

  P6.5 

D

Trip wire d

U

Internal and external fl ow

P6.6 For fl ow of a uniform stream parallel to a sharp fl at plate, 
transition to a turbulent boundary layer on the plate may 
occur at Rex 5 ρUx/μ < 1 E6, where U is the approach 
velocity and x is distance along the plate. If U 5 2.5 m/s, 
determine the distance x for the following fl uids at 20°C 
and 1 atm: (a) hydrogen, (b) air, (c) gasoline, (d) water, 
(e) mercury, and (f) glycerin.

P6.7 SAE 10W30 oil at 208C fl ows from a tank into a 2-cm-
diameter tube 40 cm long. The fl ow rate is 1.1 m3/hr. Is 
the entrance length region a signifi cant part of this tube 
fl ow?

P6.8 When water at 208C is in steady turbulent fl ow through an 
8-cm-diameter pipe, the wall shear stress is 72 Pa. What is 
the axial pressure gradient (≠p/≠x) if the pipe is (a) horizon-
tal and (b) vertical with the fl ow up?

Head loss––friction factor

P6.9 A light liquid (ρ < 950 kg/m3) fl ows at an average velocity 
of 10 m/s through a horizontal smooth tube of diameter 
5 cm. The fl uid pressure is measured at 1-m intervals along 
the pipe, as follows:

x, m 0 1 2 3 4 5 6

p, kPa 304 273 255 240 226 213 200

  Estimate (a) the total head loss, in meters; (b) the wall 
shear stress in the fully developed section of the pipe; and 
(c) the overall friction factor.
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P6.10 Water at 208C fl ows through an inclined 8-cm-diameter 
pipe. At sections A and B the following data are taken: 
pA 5 186 kPa, VA 5 3.2 m/s, zA 5 24.5 m, and pB 5 260 
kPa, VB 5 3.2 m/s, zB 5 9.1 m. Which way is the fl ow go-
ing? What is the head loss in meters?

P6.11 Water at 208C fl ows upward at 4 m/s in a 6-cm-diameter 
pipe. The pipe length between points 1 and 2 is 5 m, and 
point 2 is 3 m higher. A mercury manometer, connected 
between 1 and 2, has a reading h 5 135 mm, with p1 higher. 
(a) What is the pressure change (p1 2 p2)? (b) What is the 
head loss, in meters? (c) Is the manometer reading propor-
tional to head loss? Explain. (d) What is the friction factor 
of the fl ow?

In Probs. 6.12 to 6.99, neglect minor losses.

Laminar pipe fl ow––no minor losses

P6.12 A 5-mm-diameter capillary tube is used as a viscometer for 
oils. When the fl ow rate is 0.071 m3/h, the measured pres-
sure drop per unit length is 375 kPa/m. Estimate the viscosity 
of the fl uid. Is the fl ow laminar? Can you also estimate the 
density of the fl uid?

P6.13 A soda straw is 20 cm long and 2 mm in diameter. It delivers 
cold cola, approximated as water at 108C, at a rate of 3 cm3/s. 
(a) What is the head loss through the straw? What is the axial 
pressure gradient ≠p/≠x if the fl ow is (b) vertically up or 
(c) horizontal? Can the human lung deliver this much fl ow?

P6.14 Water at 208C is to be siphoned through a tube 1 m long 
and 2 mm in diameter, as in Fig. P6.14. Is there any height 
H for which the fl ow might not be laminar? What is the 
fl ow rate if H 5 50 cm? Neglect the tube curvature.

P6.14 

Water at 20° C

L = 1 m, d = 2 mm

H

P6.15 Professor Gordon Holloway and his students at the Uni-
versity of New Brunswick went to a fast-food emporium 
and tried to drink chocolate shakes (ρ < 1200 kg/m3, 
μ < 6 kg/m-s) through fat straws 8 mm in diameter and 
30 cm long. (a) Verify that their human lungs, which can 
develop approximately 3000 Pa of vacuum pressure, 
would be  unable to drink the milkshake through the verti-
cal straw. (b) A student cut 15 cm from his straw and 
proceeded to drink happily. What rate of milkshake fl ow 
was produced by this strategy?

P6.16 Fluid fl ows steadily, at volume rate Q, through a large pipe 
and then divides into two small pipes, the larger of which 

has an inside diameter of 25 mm and carries three times the 
fl ow of the smaller pipe. Both small pipes have the same 
length and pressure drop. If all fl ows are laminar, estimate 
the diameter of the smaller pipe.

P6.17 A capillary viscometer measures the time required for a spec-
ifi ed volume υ of liquid to fl ow through a small-bore glass 
tube, as in Fig. P6.17. This transit time is then correlated with 
fl uid viscosity. For the system shown, (a) derive an approxi-
mate formula for the time required, assuming laminar fl ow 
with no entrance and exit losses. (b) If L 5 12 cm, l 5 2 cm, 
υ 5 8 cm3, and the fl uid is water at 208C, what capillary diam-
eter D will result in a transit time t of 6 seconds?

P6.17     

υ

Large reservoir

l

L

D

P6.18 SAE 50W oil at 208C fl ows from one tank to another 
through a tube 160 cm long and 5 cm in diameter. Estimate 
the fl ow rate in m3/hr if z1 5 2 m and z2 5 0.8 m.

P6.18  

(1)

(2)

P6.19 An oil (SG 5 0.9) issues from the pipe in Fig. P6.19 at 
Q 5 35 ft3/h. What is the kinematic viscosity of the oil in ft3/s? 
Is the fl ow laminar?
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P6.19 

10 ft

L = 6 ft

D = 1
2

in

Q

P6.20 The oil tanks in Tinyland are only 160 cm high, and 
they discharge to the Tinyland oil truck through a 
smooth tube 4 mm in diameter and 55 cm long. The 
tube exit is open to the atmosphere and 145 cm below 
the tank surface. The fluid is medium fuel oil, ρ 5 850 
kg/m3 and μ 5 0.11 kg/(m ? s). Estimate the oil flow 
rate in cm3/h.

P6.21 In Tinyland, houses are less than a foot high! The rain-
fall is laminar! The drainpipe in Fig. P6.21 is only 2 mm 
in diameter. (a) When the gutter is full, what is the rate 
of draining? (b) The gutter is designed for a sudden rain-
storm of up to 5 mm per hour. For this condition, what is 
the maximum roof area that can be drained successfully? 
(c) What is Red?

P6.21 

Water

Tinyland
governor’s
mansion

20 cm

P6.22 A steady push on the piston in Fig. P6.22 causes a fl ow rate 
Q 5 0.15 cm3/s through the needle. The fl uid has 
ρ 5 900 kg/m3 and μ 5 0.002 kg/(m ? s). What force F is 
required to maintain the fl ow?

1.5 cm 3 cm

Q F
D1 = 0.25 mm

D2 = 1 cm

 
 P6.22

P6.23 SAE 10 oil at 208C fl ows in a vertical pipe of diameter 2.5 cm. 
It is found that the pressure is constant throughout the 
fl uid. What is the oil fl ow rate in m3/h? Is the fl ow up or 
down?

P6.24 Two tanks of water at 208C are connected by a capillary 
tube 4 mm in diameter and 3.5 m long. The surface of tank 
1 is 30 cm higher than the surface of tank 2. (a) Estimate 
the fl ow rate in m3/h. Is the fl ow laminar? (b) For what tube 
diameter will Red be 500?

P6.25 For the confi guration shown in Fig. P6.25, the fl uid is ethyl 
alcohol at 208C, and the tanks are very wide. Find the fl ow 
rate which occurs in m3/h. Is the fl ow laminar?

P6.25 

2 mm

1 m

50 cm

40 cm

80 cm

P6.26 Two oil tanks are connected by two 9-m-long pipes, as 
in Fig. P6.26. Pipe 1 is 5 cm in diameter and is 6 m 
higher than pipe 2. It is found that the fl ow rate in pipe 
2 is twice as large as the fl ow in pipe 1. (a) What is the 
diameter of pipe 2? (b) Are both pipe fl ows laminar? 
(c) What is the fl ow rate in pipe 2 (m3/s)? Neglect minor 
losses.
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SAE
30 W
oil at
20°C

za = 22 m

D1 = 5 cm

D2

L = 9 m

zb = 15 m

6 m

P6.26

 *P6.27 Let us attack Prob. P6.25 in symbolic fashion, using 
Fig. P6.27. All parameters are constant except the upper 
tank depth Z(t). Find an expression for the fl ow rate Q(t) as 
a function of Z(t). Set up a differential equation, and solve 
for the time t0 to drain the upper tank completely. Assume 
quasi-steady laminar fl ow.

P6.27 

ρ, μ

D

Z (t)

H

d h

L

P6.28 For straightening and smoothing an airfl ow in a 50-cm- 
diameter duct, the duct is packed with a “honeycomb” of 
thin straws of length 30 cm and diameter 4 mm, as in 
Fig. P6.28. The inlet fl ow is air at 110 kPa and 208C, mov-
ing at an average velocity of 6 m/s. Estimate the pressure 
drop across the honeycomb.

P6.28 

6 m/s

Thousands
of straws

50 
cm

30 cm

P6.29 SAE 30W oil at 208C fl ows through a straight pipe 25 m 
long, with diameter 4 cm. The average velocity is 2 m/s. 
(a) Is the fl ow laminar? Calculate (b) the pressure drop and 
(c) the power required. (d) If the pipe diameter is doubled, 
for the same average velocity, by what percent does the 
required power increase?

P6.30 SAE 10 oil at 208C fl ows through the 4-cm-diameter verti-
cal pipe of Fig. P6.30. For the mercury manometer reading 
h 5 42 cm shown, (a) calculate the volume fl ow rate in 
m3/h and (b) state the direction of fl ow.

P6.30 

SAE 10 oil

Mercury

D =  4 cm3 m

42 cm

P6.31 A laminar fl ow element (LFE) (Meriam Instrument Co.) 
measures low gas-fl ow rates with a bundle of capillary 
tubes or ducts packed inside a large outer tube. Consider 
oxygen at 208C and 1 atm fl owing at 84 ft3/min in a 4-in-
diameter pipe. (a) Is the fl ow turbulent when approaching 
the element? (b) If there are 1000 capillary tubes, L 5 4 in, 
select a tube diameter to keep Red below 1500 and also to 
keep the tube pressure drop no greater than 0.5 lbf/in2. 
(c) Do the tubes selected in part (b) fi t nicely within the 
approach pipe?
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P6.32 SAE 30 oil at 208C fl ows in the 3-cm-diameter pipe in Fig. 
P6.32, which slopes at 378. For the pressure measurements 
shown, determine (a) whether the fl ow is up or down and 
(b) the fl ow rate in m3/h.

P6.32 

pB = 180 kPa

37°

pA = 500 kPa15 m

20 m

P6.33 Water at 208C is pumped from a reservoir through a verti-
cal tube 10 ft long and 1/16th in in diameter. The pump 
provides a pressure rise of 11 lbf/in2 to the fl ow. Neglect 
entrance losses. (a) Calculate the exit velocity. (b) Approx-
imately how high will the exit water jet rise? (c) Verify that 
the fl ow is laminar.

Turbulence modeling

P6.34 Derive the time-averaged x-momentum equation (6.21) 
by direct substitution of Eqs. (6.19) into the momentum 
equation (6.14). It is convenient to write the convective 
acceleration as

 
du

dt
5

0
0x

 (u2) 1
0
0y

 (uv) 1
0
0z

 (uw)

  which is valid because of the continuity relation, Eq. (6.14).
P6.35 In the overlap layer of Fig. 6.9a, turbulent shear is large. If 

we neglect viscosity, we can replace Eq. (6.24) with the 
approximate velocity-gradient function

 
du

dy
 5  fcn(y, τw, ρ)

  Show by dimensional analysis that this leads to the loga-
rithmic overlap relation (6.28).

P6.36 The following turbulent fl ow velocity data u(y), for air at 
758F and 1 atm near a smooth fl at wall were taken in the 
University of Rhode Island wind tunnel:

y, in 0.025 0.035 0.047 0.055 0.065

u, ft/s 51.2 54.2 56.8 57.6 59.1

  Estimate (a) the wall shear stress and (b) the velocity u at 
y 5 0.22 in.

P6.37 Two infi nite plates a distance h apart are parallel to the xz 
plane with the upper plate moving at speed V, as in 
Fig. P6.37. There is a fl uid of viscosity μ and constant pres-
sure between the plates. Neglecting gravity and assuming 
incompressible turbulent fl ow u(y) between the plates, use 
the logarithmic law and appropriate boundary conditions to 
derive a formula for dimensionless wall shear stress versus 
dimensionless plate velocity. Sketch a typical shape of the 
profi le u(y).

P6.37 
x

y

V

h

Fixed

u

ν

P6.38 Suppose in Fig. P6.37 that h 5 3 cm, the fl uid in water at 
208C, and the fl ow is turbulent, so that the logarithmic law 
is valid. If the shear stress in the fl uid is 15 Pa, what is V 
in m/s?

P6.39 By analogy with laminar shear, τ 5 μ du/dy, T. V. 
 Boussinesq in 1877 postulated that turbulent shear could 
also be related to the mean velocity gradient τturb 5 ε du/dy, 
where ε is called the eddy viscosity and is much larger than 
μ. If the logarithmic overlap law, Eq. (6.28), is valid with 
τturb < τw, show that ε < κρu*y.

P6.40 Theodore von Kármán in 1930 theorized that turbulent 
shear could be represented by τturb 5 ε du/dy, where 
ε 5 ρκ2y2|du/dy| is called the mixing-length eddy viscosity 
and κ < 0.41 is Kármán’s dimensionless mixing-length 
constant [2, 3]. Assuming that τturb < τw near the wall, 
show that this expression can be integrated to yield the 
logarithmic overlap law, Eq. (6.28).

Turbulent pipe fl ow––no minor losses

P6.41 Two reservoirs, which differ in surface elevation by 40 m, 
are connected by 350 m of new pipe of diameter 8 cm. If 
the desired fl ow rate is at least 130 N/s of water at 208C, 
can the pipe material be made of (a) galvanized iron, 
(b) commercial steel, or (c) cast iron? Neglect minor losses.

P6.42 Fluid fl ows steadily, at volume rate Q, through a large hor-
izontal pipe and then divides into two small pipes, the 
larger of which has an inside diameter of 25 mm and car-
ries three times the fl ow of the smaller pipe. Both small 
pipes have the same length and pressure drop. If all fl ows 
are turbulent, at ReD near 104, estimate the diameter of the 
smaller pipe.
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P6.43 A reservoir supplies water through 100 m of 30-cm-diameter 
cast iron pipe to a turbine that extracts 80 hp from the fl ow. 
The water then exhausts to the atmosphere.

P6.43 

Water
at 20°C

Turbine

Cast iron pipe

z1 = 35 m

z2 = 5 m

  Neglect minor losses. (a) Assuming that f < 0.019, fi nd the 
fl ow rate (which results in a cubic polynomial). Explain 
why there are two legitimate solutions. (b) For extra credit, 
solve for the fl ow rates using the actual friction factors.

P6.44 Mercury at 208C fl ows through 4 m of 7-mm-diameter 
glass tubing at an average velocity of 5 m/s. Estimate the 
head loss in m and the pressure drop in kPa.

P6.45 Oil, SG 5 0.88 and ν 5 4 E-5 m2/s, fl ows at 400 gal/min 
through a 6-in asphalted cast iron pipe. The pipe is 0.5 mi 
long and slopes upward at 88 in the fl ow direction. Com-
pute the head loss in ft and the pressure change.

P6.46 The Keystone Pipeline in the chapter opener photo has a 
diameter of 36 inches and a design fl ow rate of 590,000 bar-
rels per day of crude oil at 408C. If the pipe material is new 
steel, estimate the pump horsepower required per mile of pipe.

P6.47 The gutter and smooth drainpipe in Fig. P6.47 remove rain-
water from the roof of a building. The smooth drainpipe is 
7 cm in diameter. (a) When the gutter is full, estimate the 
rate of draining. (b) The gutter is designed for a sudden 
rainstorm of up to 5 inches per hour. For this condition, what 
is the maximum roof area that can be drained successfully?

P6.47 

Water

4.2 m

P6.48 Follow up Prob. P6.46 with the following question. If the 
total Keystone pipeline length, from Alberta to Texas, is 
2147 miles, how much fl ow, in barrels per minute, will 
 result if the total available pumping power is 8,000 hp?

P6.49 The tank–pipe system of Fig. P6.49 is to deliver at least 
11 m3/h of water at 208C to the reservoir. What is the 
maximum roughness height ε allowable for the pipe?

L = 5 m, d = 3 cm

4 m

2 m

Water at 20°C

P6.49

P6.50 Ethanol at 208C fl ows at 125 U.S. gal/min through a horizontal 
cast iron pipe with L 5 12 m and d 5 5 cm. Neglecting en-
trance effects, estimate (a) the pressure gradient dp/dx, (b) the 
wall shear stress τw, and (c) the percentage reduction in friction 
factor if the pipe walls are polished to a smooth surface.

P6.51 The viscous sublayer (Fig. 6.9) is normally less than 
1 percent of the pipe diameter and therefore very diffi cult to 
probe with a fi nite-sized instrument. In an effort to generate 
a thick sublayer for probing, Pennsylvania State University 
in 1964 built a pipe with a fl ow of glycerin. Assume a smooth 
12-in-diameter pipe with V 5 60 ft/s and glycerin at 208C. 
Compute the sublayer thickness in inches and the pumping 
horsepower required at 75 percent effi ciency if L 5 40 ft.

P6.52 The pipe fl ow in Fig. P6.52 is driven by pressurized air in 
the tank. What gage pressure p1 is needed to provide a 208C 
water fl ow rate Q 5 60 m3/h?

P6.52 

30 m

60 m

80 m

10 m

Smooth pipe:
d = 5 cm

Q

Open jet

p1



428 Chapter 6 Viscous Flow in Ducts

P6.53 Water at 208C fl ows by gravity through a smooth pipe from 
one reservoir to a lower one. The elevation difference is 60 m. 
The pipe is 360 m long, with a diameter of 12 cm. Calculate 
the expected fl ow rate in m3/h. Neglect minor losses.

 *P6.54 A swimming pool W by Y by h deep is to be emptied by gravity 
through the long pipe shown in Fig. P6.54. Assuming an aver-
age pipe friction factor fav and neglecting minor losses, derive 
a formula for the time to empty the tank from an initial level ho.

h

Water

Bottom =
W by Y

Pipe:
L, D, �

V

P6.54

P6.55 The reservoirs in Fig. P6.55 contain water at 208C. If the 
pipe is smooth with L 5 4500 m and d 5 4 cm, what will 
the fl ow rate in m3/h be for Dz 5 100 m?

P6.55 

1

2B

L, D, 

Δ z

�

P6.56 The Alaska Pipeline in the chapter opener photo has a de-
sign fl ow rate of 4.4 E7 gallons per day of crude oil at 608C 
(see Fig. A.1). (a) Assuming a galvanized-iron wall, esti-
mate the total pressure drop required for the 800-mile trip. 
(b) If there are nine equally spaced pumps, estimate the 
horsepower each pump must deliver.

P6.57 Apply the analysis of Prob. P6.54 to the following data. Let 
W 5 5 m, Y 5 8 m, ho 5 2 m, L 5 15 m, D 5 5 cm, and 
ε 5 0. (a) By letting h 5 1.5 m and 0.5 m as representative 
depths, estimate the average friction factor. Then (b) esti-
mate the time to drain the pool.

P6.58 For the system in Prob. 6.53, a pump is used at night to 
drive water back to the upper reservoir. If the pump deliv-
ers 15,000 W to the water, estimate the fl ow rate.

P6.59 The following data were obtained for fl ow of 208C water at 
20 m3/h through a badly corroded 5-cm-diameter pipe that 
slopes downward at an angle of 88: p1 5 420 kPa, z1 5 12 m, 
p2 5 250 kPa, z2 5 3 m. Estimate (a) the roughness ratio of 
the pipe and (b) the percentage change in head loss if the 
pipe were smooth and the fl ow rate the same.

P6.60 In the spirit of Haaland’s explicit pipe friction factor 
 approximation, Eq. (6.49), Jeppson [20] proposed the 
 following explicit formula:

 
1

1f
< 22.0 log10 aε/d

3.7
1

5.74

Re0.9
d

b
  (a) Is this identical to Haaland’s formula with just a simple 

rearrangement? Explain. (b) Compare Jeppson’s formula 
to Haaland’s for a few representative values of (turbulent) 
Red and ε/d and their errors compared to the Colebrook 
formula (6.48). Discuss briefl y.

P6.61 What level h must be maintained in Fig. P6.61 to deliver a 
fl ow rate of 0.015 ft3/s through the 1

2-in commercial steel 
pipe?

P6.61 

Water
at 20°C

h

L = 80 ft

D = 1
2

in

P6.62 Water at 208C is to be pumped through 2000 ft of pipe from 
reservoir 1 to 2 at a rate of 3 ft3/s, as shown in Fig. P6.62. 
If the pipe is cast iron of diameter 6 in and the pump is 
75 percent effi cient, what horsepower pump is needed?

P6.62 
Pump

L = 2000 ft

2

1

120 ft

Flow rate and sizing problems

P6.63 A tank contains 1 m3 of water at 208C and has a drawn-
capillary outlet tube at the bottom, as in Fig. P6.63. Find 
the outlet volume fl ux Q in m3/h at this instant.

P6.64 For the system in Fig. P6.63, solve for the fl ow rate in m3/h 
if the fl uid is SAE 10 oil at 208C. Is the fl ow laminar or 
turbulent?
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P6.63 Q

1 m 1 m3

L = 80 cm
D = 4 cm

P6.65 In Prob. P6.63 the initial fl ow is turbulent. As the water 
drains out of the tank, will the fl ow revert to laminar mo-
tion as the tank becomes nearly empty? If so, at what tank 
depth? Estimate the time, in h, to drain the tank completely.

P6.66 Ethyl alcohol at 208C fl ows through a 10-cm horizontal 
drawn tube 100 m long. The fully developed wall shear 
stress is 14 Pa. Estimate (a) the pressure drop, (b) the vol-
ume fl ow rate, and (c) the velocity u at r 5 1 cm.

P6.67 A straight 10-cm commercial-steel pipe is 1 km long and is 
laid on a constant slope of 58. Water at 208C fl ows down-
ward, due to gravity only. Estimate the fl ow rate in m3/h. 
What happens if the pipe length is 2 km?

 *P6.68 The Moody chart cannot fi nd V directly, since V appears in 
both ordinate and abscissa. (a) Arrange the variables (hf , d, 
g, L, ν) into a single dimensionless group, with hf d

3 in the 
numerator, denoted as ξ , which equals (f Red

2/2). (b) Rear-
range the Colebrook formula (6.48) to solve for Red in 
terms of ξ. (c) For extra credit, solve Example 6.9 with this 
new formula.

P6.69 For Prob. P6.62 suppose the only pump available can 
 deliver 80 hp to the fl uid. What is the proper pipe size in 
inches to maintain the 3 ft3/s fl ow rate?

P6.70 Ethylene glycol at 208C fl ows through 80 m of cast iron 
pipe of diameter 6 cm. The measured pressure drop is 
250 kPa. Neglect minor losses. Using a noniterative formu-
lation, estimate the fl ow rate in m3/h.

 *P6.71 It is desired to solve Prob. 6.62 for the most economical 
pump and cast iron pipe system. If the pump costs $125 per 
horsepower delivered to the fl uid and the pipe costs $7000 
per inch of diameter, what are the minimum cost and the 
pipe and pump size to maintain the 3 ft3/s fl ow rate? Make 
some simplifying assumptions.

P6.72 Modify Prob. P6.57 by letting the diameter be unknown. 
Find the proper pipe diameter for which the pool will drain 
in about two hours fl at.

P6.73 For 208C water fl ow in a smooth, horizontal 10-cm pipe, 
with Dp/L 5 1000 Pa/m, the writer computed a fl ow rate of 
0.030 m3/s. (a) Verify, or disprove, the writer’s answer. 
(b) If verifi ed, use the power-law friction factor relation, 
Eq. (6.41), to estimate the pipe diameter that will triple this 
fl ow rate. (c) For extra credit, use the more exact friction 
factor relation, Eq. (6.38), to solve part (b).

P6.74 Two reservoirs, which differ in surface elevation by 40 m, 
are connected by a new commercial steel pipe of diameter 
8 cm. If the desired fl ow rate is 200 N/s of water at 208C, 
what is the proper length of the pipe?

P6.75 You wish to water your garden with 100 ft of 58-in-diameter 
hose whose roughness is 0.011 in. What will be the deliv-
ery, in ft3/s, if the gage pressure at the faucet is 60 lbf/in2? 
If there is no nozzle (just an open hose exit), what is the 
maximum horizontal distance the exit jet will carry?

P6.76 The small turbine in Fig. P6.76 extracts 400 W of power 
from the water fl ow. Both pipes are wrought iron. Compute 
the fl ow rate Q in m3/h. Why are there two solutions? 
Which is better?

Q

Water
20°C

Turbine

30 m
D = 4 cm

10 m
D = 6 cm

20 m

P6.76

 *P6.77 Modify Prob. P6.76 into an economic analysis, as follows: 
Let the 40 m of wrought iron pipe have a uniform diameter 
d. Let the steady water fl ow available be Q 5 30 m3/h. The 
cost of the turbine is $4 per watt developed, and the cost of 
the piping is $75 per centimeter of diameter. The power 
generated may be sold for $0.08 per kilowatt-hour. Find 
the proper pipe diameter for minimum payback time—that 
is, the minimum time for which the power sales will equal 
the initial cost of the system.

P6.78 In Fig. P6.78 the connecting pipe is commercial steel 6 cm 
in diameter. Estimate the fl ow rate, in m3/h, if the fl uid is 
water at 208C. Which way is the fl ow?

P6.79 A garden hose is to be used as the return line in a waterfall 
display at a mall. In order to select the proper pump, you 
need to know the roughness height inside the garden hose. 
Unfortunately, roughness information is not supplied by 
the hose manufacturer. So you devise a simple experiment 
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to measure the roughness. The hose is attached to the drain 
of an above-ground swimming pool, the surface of which is 
3.0 m above the hose outlet. You estimate the minor loss 
coeffi cient of the entrance region as 0.5, and the drain valve 
has a minor loss equivalent length of 200 diameters when 
fully open. Using a bucket and stopwatch, you open the valve 
and measure the fl ow rate to be 2.0 3 1024 m3/s for a hose 
that is 10.0 m long and has an inside diameter of 1.50 cm. 
Estimate the roughness height in mm inside the hose.

P6.78 

200 kPa
gage

L = 50 m

15 m

P6.80 The head-versus-fl ow-rate characteristics of a centrifugal 
pump are shown in Fig. P6.80. If this pump drives water at 
208C through 120 m of 30-cm-diameter cast iron pipe, 
what will be the resulting fl ow rate, in m3/s?

P6.80 

80 m

hp

0

Pump
performance

Parabola

Q 2m3/s

P6.81 The pump in Fig. P6.80 is used to deliver gasoline at 208C 
through 350 m of 30-cm-diameter galvanized iron pipe. 
Estimate the resulting fl ow rate, in m3/s. (Note that the 
pump head is now in meters of gasoline.)

P6.82 Fluid at 208C fl ows through a horizontal galvanized-iron 
pipe 20 m long and 8 cm in diameter. The wall shear stress 
is 90 Pa. Calculate the fl ow rate in m3/h if the fl uid is 
(a) glycerin and (b) water.

P6.83 For the system of Fig. P6.55, let Dz 5 80 m and L 5 185 m 
of cast iron pipe. What is the pipe diameter for which the 
fl ow rate will be 7 m3/h?

P6.84 It is desired to deliver 60 m3/h of water at 208C through a 
horizontal asphalted cast iron pipe. Estimate the pipe diam-
eter that will cause the pressure drop to be exactly 40 kPa 
per 100 m of pipe length.

P6.85 For the system in Prob. P6.53, a pump, which delivers 
15,000 W to the water, is used at night to refi ll the upper 

reservoir. The pipe diameter is increased from 12 cm to 
provide more fl ow. If the resultant fl ow rate is 90 m3/h, esti-
mate the new pipe size.

Noncircular ducts

P6.86 SAE 10 oil at 208C fl ows at an average velocity of 2 m/s 
between two smooth parallel horizontal plates 3 cm apart. 
Estimate (a) the centerline velocity, (b) the head loss per 
meter, and (c) the pressure drop per meter.

P6.87 A commercial steel annulus 40 ft long, with a 5 1 in and 
b 5 1

2 in, connects two reservoirs that differ in surface 
height by 20 ft. Compute the fl ow rate in ft3/s through the 
annulus if the fl uid is water at 208C.

P6.88 An oil cooler consists of multiple parallel-plate pas-
sages, as shown in Fig. P6.88. The available pressure 
drop is 6 kPa, and the fl uid is SAE 10W oil at 208C. 
If the desired total fl ow rate is 900 m3/h, estimate the 
 appropriate number of passages. The plate walls are 
 hydraulically smooth.

2 m
50 cm

50 cm
Flow

P6.88

P6.89 An annulus of narrow clearance causes a very large 
pressure drop and is useful as an accurate measure-
ment of viscosity. If a smooth annulus 1 m long 
with a 5 50 mm and b 5 49 mm carries an oil flow at 
0.001 m3/s, what is the oil viscosity if the pressure 
drop is 250 kPa?

P6.90 A rectangular sheet-metal duct is 200 ft long and has a 
fi xed height H 5 6 in. The width B, however, may vary 
from 6 to 36 in. A blower provides a pressure drop of 80 Pa 
of air at 208C and 1 atm. What is the optimum width B that 
will provide the most airfl ow in ft3/s?

P6.91 Heat exchangers often consist of many triangular pas-
sages. Typical is Fig. P6.91, with L 5 60 cm and an isos-
celes-triangle cross section of side length a 5 2 cm and 
included angle β 5 808. If the average velocity is 
V 5 2 m/s and the fl uid is SAE 10 oil at 208C, estimate the 
pressure drop.
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P6.91 
V

β

L

a

P6.92 A large room uses a fan to draw in atmospheric air at 208C 
through a 30-cm by 30-cm commercial-steel duct 12 m 
long, as in Fig. P6.92. Estimate (a) the airfl ow rate in m3/h 
if the room pressure is 10 Pa vacuum and (b) the room 
pressure if the fl ow rate is 1200 m3/h. Neglect minor losses.

12 m

Room
30 cm by 30 cm

patm

Fan

P6.92

P6.93 In Moody’s Example 6.6, the 6-inch diameter, 200-ft-long 
asphalted cast iron pipe has a pressure drop of about 
280 lbf/ft2 when the average water velocity is 6 ft/s. Com-
pare this to an annular cast iron pipe with an inner diameter 
of 6 in and the same annular average velocity of 6 ft/s. 
(a) What outer diameter would cause the fl ow to have the 
same pressure drop of 280 lbf/ft2? (b) How do the cross-
section areas compare, and why? Use the hydraulic diam-
eter approximation.

P6.94 Air at 208C fl ows through a smooth duct of  diameter 20 cm 
at an average velocity of 5 m/s. It then fl ows into a smooth 
square duct of side length a. Find the square duct size a for 
which the pressure drop per meter will be exactly the same 
as the circular duct.

P6.95 Although analytical solutions are available for laminar 
fl ow in many duct shapes [34], what do we do about 
ducts of arbitrary shape? Bahrami et al. [57] propose 
that a better approach to the pipe result, f Re 5 64, is 
achieved by replacing the hydraulic diameter Dh with 1A, where A is the area of the cross section. Test this 
idea for the isosceles triangles of Table 6.4. If time is 
short, at least try 108, 508, and 808. What do you con-
clude about this idea?

P6.96 A fuel cell [59] consists of air (or oxygen) and hydrogen 
micro ducts, separated by a membrane that promotes pro-
ton exchange for an electric current, as in Fig. P6.96. Sup-
pose that the air side, at 208C and approximately 1 atm, has 
fi ve 1 mm by 1 mm ducts, each 1 m long. The total fl ow 

rate is 1.5 E-4 kg/s. (a) Determine if the fl ow is laminar or 
turbulent. (b) Estimate the pressure drop. (Problem cour-
tesy of Dr. Pezhman Shirvanian.)

P6.96 

Anode Cathode
1 mm by 1 mm by 1m

PEM membrane

Hydrogen
flow

Air 
flow

P6.97 A heat exchanger consists of multiple parallel-plate pas-
sages, as shown in Fig. P6.97. The available pressure drop 
is 2 kPa, and the fl uid is water at 208C. If the desired total 
fl ow rate is 900 m3/h, estimate the appropriate number of 
passages. The plate walls are hydraulically smooth.

2 m
50 cm

50 cm
Flow

P6.97

P6.98 A rectangular heat exchanger is to be divided into 
smaller sections using sheets of commercial steel 
0.4 mm thick, as sketched in Fig. P6.98. The fl ow rate is 
20 kg/s of water at 208C. Basic dimensions are L 5 1 m, 
W 5 20 cm, and H 5 10 cm. What is the proper number 
of square sections if the overall pressure drop is to be no 
more than 1600 Pa?
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P6.98 

H

W

L

Minor or local losses

P6.99 In Sec. 6.11 it was mentioned that Roman aqueduct cus-
tomers obtained extra water by attaching a diffuser to their 
pipe exits. Fig. P6.99 shows a simulation: a smooth inlet 
pipe, with or without a 158 conical diffuser expanding to a 
5-cm-diameter exit. The pipe entrance is sharp-edged. Cal-
culate the fl ow rate (a) without and (b) with the diffuser.

  

D2 = 5 cm

15° diffuser

D1 = 3 cm, L = 2 m2 m

P6.99

 *P6.100 Modify Prob. P6.55 as follows: Assume a pump can deliver 
3 kW to pump the water back up to reservoir 1 from reservoir 
2. Accounting for an open fl anged globe valve and sharp-edged 
entrance and exit, estimate the predicted fl ow rate, in m3/h.

P6.101 In Fig. P6.101 a thick fi lter is being tested for losses. The 
fl ow rate in the pipe is 7 m3/min, and the upstream pressure 
is 120 kPa. The fl uid is air at 208C. Using the water manom-
eter reading, estimate the loss coeffi cient K of the fi lter.

P6.101 

4 cm Water

Air d = 10 cm

 *P6.102 A 70 percent effi cient pump delivers water at 208C from 
one reservoir to another 20 ft higher, as in Fig. P6.102. The 
piping system consists of 60 ft of galvanized iron 2-in pipe, 
a reentrant entrance, two screwed 908 long-radius elbows, 
a screwed-open gate valve, and a sharp exit. What is the 
input power required in horsepower with and without a 68 
well-designed conical expansion added to the exit? The 
fl ow rate is 0.4 ft3/s.

  

20 ft

6° cone

Pump

P6.102

P6.103 The reservoirs in Fig. P6.103 are connected by cast iron pipes 
joined abruptly, with sharp-edged entrance and exit. Including 
minor losses, estimate the fl ow of water at 208C if the surface 
of reservoir 1 is 45 ft higher than that of reservoir 2.

  

1 2

D = 2 in
L = 20 ft

D = 1 in
L = 20 ft

1 in 2 in

P6.103

P6.104 Consider a 208C fl ow at 2 m/s through a smooth 3-mm 
 diameter microtube which consists of a straight run of 
10  cm, a long radius bend, and another straight run of 
10  cm. Compute the total pressure drop if the fl uid is 
(a) water; and (b) ethylene glycol.

P6.105 The system in Fig. P6.105 consists of 1200 m of 5 cm cast 
iron pipe, two 458 and four 908 fl anged long-radius elbows, 
a fully open fl anged globe valve, and a sharp exit into a 
reservoir. If the elevation at point 1 is 400 m, what gage 
pressure is required at point 1 to deliver 0.005 m3/s of water 
at 208C into the reservoir?
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1

Elevation
500 m

Sharp
exit

Open
globe

45°

45°

P6.105

P6.106 The water pipe in Fig. P6.106 slopes upward at 308. The 
pipe has a 1-in diameter and is smooth. The fl anged globe 
valve is fully open. If the mercury manometer shows a 7-in 
defl ection, what is the fl ow rate in ft3/s?

P6.106 

7 in

10 ft

Mercury

Globe

 *P6.107 A tank of water 4 m in diameter and 7 m deep is to be drained 
by a 5-cm-diameter exit pipe at the bottom, as in Fig. P6.107. 
In design (1), the pipe extends out for 1 m and into the tank 
for 10 cm. In design (2), the interior pipe is removed and the 
entrance beveled, Fig. 6.21, so that K < 0.1 in the entrance. 
(a) An engineer claims that design (2) will drain 25 percent 
faster than design (1). Is this claim true? (b) Estimate the 
time to drain of design (2), assuming f < 0.020.

 

(1) (2)

P6.107

P6.108 The water pump in Fig. P6.108 maintains a pressure of 6.5 
psig at point 1. There is a fi lter, a half-open disk valve, and 
two regular screwed elbows. There are 80 ft of 4-in diam-
eter commercial steel pipe. (a) If the fl ow rate is 0.4 ft3/s, 
what is the loss coeffi cient of the fi lter? (b) If the disk valve 
is wide open and Kfi lter 5 7, what is the resulting fl ow rate?

1

Pump

Valve Filter

Elbows

9 ft

P6.108

P6.109 In Fig. P6.109 there are 125 ft of 2-in pipe, 75 ft of 6-in 
pipe, and 150 ft of 3-in pipe, all cast iron. There are three 
908 elbows and an open globe valve, all fl anged. If the exit 
elevation is zero, what horsepower is extracted by the tur-
bine when the fl ow rate is 0.16 ft3/s of water at 208C?

Open
globeTurbine

3 in6 in

2 in

Elevation 100 ft

P6.109

P6.110 In Fig. P6.110 the pipe entrance is sharp-edged. If the fl ow rate 
is 0.004 m3/s, what power, in W, is extracted by the turbine?

Water

40 m

Turbine
Open globe

valve

Cast iron:
L = 125 m, D = 5 cm

P6.110

Series and parallel pipe systems

P6.111 For the parallel-pipe system of Fig. P6.111, each pipe is 
cast iron, and the pressure drop p1 2 p2 5 3 lbf/in2. Com-
pute the total fl ow rate between 1 and 2 if the fl uid is SAE 
10 oil at 208C.
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L = 200 ft

1 2

D = 3 in

D = 2 in

L = 250 ft

P6.111 

P6.112 If the two pipes in Fig. P6.111 are instead laid in series 
with the same total pressure drop of 3 lbf/in2, what will the 
fl ow rate be? The fl uid is SAE 10 oil at 208C.

P6.113 The parallel galvanized iron pipe system of Fig. P6.113 
delivers water at 208C with a total fl ow rate of 0.036 m3/s. 
If the pump is wide open and not running, with a loss coef-
fi cient K 5 1.5, determine (a) the fl ow rate in each pipe and 
(b) the overall pressure drop.

L1 = 60 m, D1 = 5 cm 

Q = 0.036 m3/s

L2 = 55 m, D2 = 4 cm 

Pump

P6.113

 *P6.114 A blower supplies standard air to a plenum that feeds two 
horizontal square sheet-metal ducts with sharp-edged en-
trances. One duct is 100 ft long, with a cross-section 6 in by 
6 in. The second duct is 200 ft long. Each duct exhausts to 
the atmosphere. When the plenum pressure is 5.0 lbf/ft2 

(gage) the volume fl ow in the longer duct is three times the 
fl ow in the shorter duct. Estimate both volume fl ows and 
the cross-section size of the longer duct.

P6.115 In Fig. P6.115 all pipes are 8-cm-diameter cast iron. Deter-
mine the fl ow rate from reservoir 1 if valve C is (a) closed 
and (b) open, K 5 0.5.

P6.116 For the series-parallel system of Fig. P6.116, all pipes are 
8-cm-diameter asphalted cast iron. If the total pressure 
drop p1 2 p2 5 750 kPa, fi nd the resulting fl ow rate Q m3/h 
for water at 208C. Neglect minor losses.

P6.117 A blower delivers air at 3000 m3/h to the duct circuit in 
Fig. P6.117. Each duct is commercial steel and of square 
cross section, with side lengths a1 5 a3 5 20 cm and 
a2 5 a4 5 12 cm. Assuming sea-level air conditions, esti-
mate the power required if the blower has an effi ciency of 
75 percent. Neglect minor losses.

1

2

Z = 25 m

Water
at 20°C

L = 100 m

A C

B

Valve

L = 70 m

Z = 0 m

10 m

30 m

L = 50 m

P6.115

P6.116 1 2

L = 250 m

150 m

100 m

  

1

4

3

2 30 m

40 mBlower

P6.117

P6.118 For the piping system of Fig. P6.118, all pipes are concrete 
with a roughness of 0.04 in. Neglecting minor losses, com-
pute the overall pressure drop p1 2 p2 in lbf/in2 if 
Q 520 ft3/s. The fl uid is water at 208C.

D = 8 in
L = 1500 ft

21

L = 1000 ft

D = 12 in

D = 15 in
L = 1200 ft

D = 12 in

L = 800 ft

P6.118
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P6.119 For the piping system of Prob. P6.111, let the fl uid be gaso-
line at 208C, with both pipes cast iron. If the fl ow rate in the 
2-in pipe (b) is 1.2 ft3/min, estimate the fl ow rate in the

  3-in pipe (a), in ft3/min.
P6.120 Three cast iron pipes are laid in parallel with these 

 dimensions:

Pipe Length, m Diameter, cm

1 800 12
2 600 8
3 900 10

  The total fl ow rate is 200 m3/h of water at 208C. Determine 
(a) the fl ow rate in each pipe and (b) the pressure drop 
across the system.

Three-reservoir and pipe network systems

P6.121 Consider the three-reservoir system of Fig. P6.121 with the 
following data:

L1 5 95m  L2 5 125 m  L3 5 160 m

z1 5 25 m  z2 5 115 m  z3 5 85 m

  All pipes are 28-cm-diameter unfi nished concrete 
(ε 5 1 mm). Compute the steady fl ow rate in all pipes 
for water at 208C.

 

Z1

Z2

Z3

L1

L2

L3

P6.121

P6.122 Modify Prob. P6.121 as follows: Reduce the diameter to 
15 cm (with ε 5 1 mm), and compute the fl ow rates for 
water at 208C. These fl ow rates distribute in nearly the 
same manner as in Prob. P6.121 but are about 5.2 times 
lower. Can you explain this difference?

P6.123 Modify Prob. P6.121 as follows: All data are the same 
except that z3 is unknown. Find the value of z3 for which 
the fl ow rate in pipe 3 is 0.2 m3/s toward the junction. 
(This problem requires iteration and is best suited to a 
computer.)

P6.124 The three-reservoir system in Fig. P6.124 delivers water at 
208C. The system data are as follows:

 D1 5 8 in   D2 5 6 in   D3 5 9 in

 L1 5 1800 ft  L2 5 1200 ft  L3 5 1600 ft

  All pipes are galvanized iron. Compute the fl ow rate in all 
pipes.

P6.124 

1

2

3

z1 = 20 ft

z2 = 100 ft

z3 = 50 ft

J

P6.125 Suppose that the three cast iron pipes in Prob. P6.120 are 
instead connected to meet smoothly at a point B, as shown 
in Fig. P6.125. The inlet pressures in each pipe are

 p1 5 200 kPa   p2 5 160 kPa   p3 5 100 kPa.

  The fl uid is water at 208C. Neglect minor losses. Estimate 
the fl ow rate in each pipe and whether it is toward or away 
from point B.

  

B

1 2

3

P6.125

P6.126 Modify Prob. P6.124 as follows: Let all data be the same 
except that pipe 1 is fi tted with a butterfl y valve (Fig. 6.19b). 
Estimate the proper valve opening angle (in degrees) for 
the fl ow rate through pipe 1 to be reduced to 1.5 ft3/s to-
ward reservoir 1. (This problem requires iteration and is 
best suited to a computer.)

P6.127 In the fi ve-pipe horizontal network of Fig. P6.127, as-
sume that all pipes have a friction factor f 5 0.025. For 
the given inlet and exit fl ow rate of 2 ft3/s of water at 
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208C, determine the fl ow rate and direction in all pipes. 
If pA 5 120 lbf/in2 gage, determine the pressures at 
points B, C, and D.

d = 8 in
D

A

B
4000 ft

3000 ft

2 ft3/s

2 ft3/s

9 in

3 in

C

6 in
8 in

P6.127

P6.128 Modify Prob. P6.127 as follows: Let the inlet fl ow rate at A 
and the exit fl ow at D be unknown. Let pA 2 pB 5 100 lbf/in2. 
Compute the fl ow rate in all fi ve pipes.

P6.129 In Fig. P6.129 all four horizontal cast iron pipes are 45 m 
long and 8 cm in diameter and meet at junction a, deliver-
ing water at 208C. The pressures are known at four points 
as shown:

p1 5 950 kPa  p2 5 350 kPa

p3 5 675 kPa  p4 5 100 kPa

  Neglecting minor losses, determine the fl ow rate in each 
pipe.

P6.129 

p1

L1

p2

L  2

L  3

a

L 4
p 4

p 3

P6.130 In Fig. P6.130 lengths AB and BD are 2000 and 1500 ft, 
respectively. The friction factor is 0.022 everywhere, and 
pA 5 90 lbf/in2 gage. All pipes have a diameter of 6 in. For 
water at 208C, determine the fl ow rate in all pipes and the 
pressures at points B, C, and D.

C

D

A B

0.5 ft3/s

2.0 ft3/s

0.5 ft3/s

1.0 ft3/s

P6.130

Diffuser performance

P6.131 A water tunnel test section has a 1-m diameter and fl ow 
properties V 5 20 m/s, p 5 100 kPa, and T 5 208C. The 
boundary layer blockage at the end of the section is 9  percent. 
If a conical diffuser is to be added at the end of the section to 
achieve maximum pressure recovery, what should its angle, 
length, exit diameter, and exit pressure be?

P6.132 For Prob. P6.131 suppose we are limited by space to a 
total diffuser length of 10 m. What should the diffuser 
angle, exit diameter, and exit pressure be for maximum 
recovery?

P6.133 A wind tunnel test section is 3 ft square with fl ow proper-
ties V 5 150 ft/s, p 5 15 lbf/in2 absolute, and T 5 688F. 
Boundary layer blockage at the end of the test section is 
8 percent. Find the angle, length, exit height, and exit pres-
sure of a fl at-walled diffuser added onto the section to 
achieve maximum pressure recovery.

P6.134 For Prob. P6.133 suppose we are limited by space to a total 
diffuser length of 30 ft. What should the diffuser angle, exit 
height, and exit pressure be for maximum recovery?

The pitot-static tube

P6.135 An airplane uses a pitot-static tube as a velocimeter. The 
measurements, with their uncertainties, are a static tem-
perature of (211 6 3)8C, a static pressure of 60 6 2 kPa, 
and a pressure difference (po 2 ps) 5 3200 6 60 Pa. 
(a)   Estimate the airplane’s velocity and its uncertainty. 
(b) Is a compressibility correction needed?

P6.136 For the pitot-static pressure arrangement of Fig. P6.136, 
the manometer fl uid is (colored) water at 208C. Estimate 
(a) the centerline velocity, (b) the pipe volume fl ow, and 
(c) the (smooth) wall shear stress.

P6.137 For the 208C water fl ow of Fig. P6.137, use the pitot-static 
arrangement to estimate (a) the centerline velocity and 
(b)  the volume fl ow in the 5-in-diameter smooth pipe. 
(c) What error in fl ow rate is caused by neglecting the 1-ft 
elevation difference?
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P6.136 

Air
8 cm

20°C

1 atm

40 mm

P6.137 

2 in

Mercury

1 ft

P6.138 An engineer who took college fl uid mechanics on a 
pass–fail basis has placed the static pressure hole far 
upstream of the stagnation probe, as in Fig. P6.138, thus 
contaminating the pitot measurement ridiculously with 
pipe friction losses. If the pipe fl ow is air at 208C and 
1 atm and the manometer fl uid is Meriam red oil (SG 5 
0.827), estimate the air centerline velocity for the given 
manometer reading of 16 cm. Assume a smooth-walled 
tube.

P6.138 

D = 6 cm
16 cm

10 m

Air

P6.139 Professor Walter Tunnel needs to measure the fl ow  velocity 
in a water tunnel. Due to budgetary restrictions, he cannot 

afford a pitot-static probe, but instead inserts a total head 
probe and a static pressure probe, as shown in Fig. P6.139, 
a distance h1 apart from each other. Both probes are in the 
main free stream of the water tunnel,  unaffected by the 
thin boundary layers on the sidewalls. The two probes are 
connected as shown to a U-tube  manometer. The densities 
and vertical distances are shown in Fig. P6.139. (a) Write 
an expression for velocity V in terms of the parameters in 
the problem. (b) Is it critical that distance h1 be measured 
accurately? (c) How does the  expression for velocity V dif-
fer from that which would be obtained if a pitot-static 
probe had been available and used with the same U-tube 
manometer?

h1

h2

h3

U-tube manometer

ptotal

pstatic

ρw

ρm

V

P6.139

Flowmeters: the orifi ce plate

P6.140 Gasoline at 208C fl ows at 3 m3/h in a 6-cm-diameter pipe. 
A 4-cm-diameter thin-plate orifi ce with corner taps is 
 installed. Estimate the measured pressure drop, in Pa.

P6.141 Gasoline at 208C flows at 105 m3/h in a 10-cm-diameter 
pipe. We wish to meter the flow with a thin-plate ori-
fice and a differential pressure transducer that reads 
best at about 55 kPa. What is the proper β ratio for the 
orifice?

P6.142 The shower head in Fig. P6.142 delivers water at 508C. An 
orifi ce-type fl ow reducer is to be installed. The upstream 
pressure is constant at 400 kPa. What fl ow rate, in gal/min, 
results without the reducer? What reducer orifi ce diameter 
would decrease the fl ow by 40 percent?
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p = 400 kPa

45 holes, 1.5-mm diameter

Flow reducer

D = 1.5 cm 

P6.142

P6.143 A 10-cm-diameter smooth pipe contains an orifi ce plate 
with D: 12D taps and β 5 0.5. The measured orifi ce pressure 
drop is 75 kPa for water fl ow at 208C. Estimate the fl ow 
rate, in m3/h. What is the nonrecoverable head loss?

 *P6.144 Water at 208C fl ows through the orifi ce in Fig. P6.154, 
which is monitored by a mercury manometer. If d 5 3 cm, 
(a) what is h when the fl ow rate is 20 m3/h and (b) what is 
Q in m3/h when h 5 58 cm?

Water

d

h

5 cm

Mercury

P6.144

P6.145 The 1-m-diameter tank in Fig. P6.145 is initially fi lled with 
gasoline at 208C. There is a 2-cm-diameter orifi ce in the 
bottom. If the orifi ce is suddenly opened, estimate the time 
for the fl uid level h(t) to drop from 2.0 to 1.6 m.

P6.145 

1 m

h (0) = 2 m

Q (t )

h (t )

P6.146 A pipe connecting two reservoirs, as in Fig. P6.146, con-
tains a thin-plate orifi ce. For water fl ow at 208C, estimate 
(a) the volume fl ow through the pipe and (b) the pressure 
drop across the orifi ce plate.

P6.146 

20 m

3-cm
orifice

L = 100 m
D = 5 cm

P6.147 Air fl ows through a 6-cm-diameter smooth pipe that has a 
2-m-long perforated section containing 500 holes (diame-
ter 1 mm), as in Fig. P6.147. Pressure outside the pipe is 
sea-level standard air. If p1 5 105 kPa and Q1 5 110 m3/h, 
estimate p2 and Q2, assuming that the holes are approxi-
mated by thin-plate orifi ces. (Hint: A momentum control 
volume may be very useful.)

D = 6 cm2 m

500 holes (diameter 1 mm)

1 2

P6.147

P6.148 A smooth pipe containing ethanol at 208C fl ows at 7 m3/h 
through a Bernoulli obstruction, as in Fig. P6.148. Three 
piezometer tubes are installed, as shown. If the obstruction 
is a thin-plate orifi ce, estimate the piezometer levels (a) h2 
and (b) h3.

 D = 5 cm

 5 m

d = 3 cm

h3
h2

h1= 1 m

P6.148
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Flowmeters: the fl ow nozzle

P6.149 In a laboratory experiment, air at 208C fl ows from a large 
tank through a 2-cm-diameter smooth pipe into a sea-level 
atmosphere, as in Fig. P6.149. The fl ow is metered by a 
long-radius nozzle of 1-cm diameter, using a manometer 
with Meriam red oil (SG 5 0.827). The pipe is 8 m long. 
The measurements of tank pressure and manometer height 
are as follows:

ptank, Pa(gage): 60 320 1200 2050 2470 3500 4900

hmano, mm: 6 38 160 295 380 575 820

Use these data to calculate the fl ow rates Q and Reynolds 
numbers ReD and make a plot of measured fl ow rate versus 
tank pressure. Is the fl ow laminar or turbulent? Compare 
the data with theoretical results obtained from the Moody 
chart, including minor losses. Discuss.

Air
tank

pgage

pa = 1 atm

8 m

h

V

P6.149

P6.150 Gasoline at 208C fl ows at 0.06 m3/s through a 15-cm pipe 
and is metered by a 9-cm long-radius fl ow nozzle 
(Fig. 6.40a). What is the expected pressure drop across the 
nozzle?

P6.151 An engineer needs to monitor a fl ow of 208C gasoline at 
about 250 6 25 gal/min through a 4-in-diameter smooth 
pipe. She can use an orifi ce plate, a long-radius fl ow noz-
zle, or a venturi nozzle, all with 2-in-diameter throats. The 
only differential pressure gage available is accurate in the 
range 6 to 10 lbf/in2. Disregarding fl ow losses, which 
 device is best?

P6.152 Kerosene at 208C fl ows at 20 m3/h in an 8-cm-diameter 
pipe. The fl ow is to be metered by an ISA 1932 fl ow nozzle 
so that the pressure drop is 7000 Pa. What is the proper 
nozzle diameter?

P6.153 Two water tanks, each with base area of 1 ft2, are  connected 
by a 0.5-in-diameter long-radius nozzle as in Fig. P6.153. 
If h 5 1 ft as shown for t 5 0, estimate the time for h(t) to 
drop to 0.25 ft.

P6.153 

d =    in1
2

1 ft 2 1 ft 2

h = 1ft

2 ft

Flowmeters: the venturi meter

P6.154 Gasoline at 208C fl ows through a 6-cm-diameter pipe. It is 
metered by a modern venturi nozzle with d 5 4 cm. The 
measured pressure drop is 8.5 kPa. Estimate the fl ow rate in 
gallons per minute.

P6.155 It is desired to meter methanol at 208C fl owing through a 
5-in-diameter pipe. The expected fl ow rate is about 300 
gal/min. Two fl owmeters are available: a venturi nozzle and 
a thinplate orifi ce, each with d 5 2 in. The differential pres-
sure gage on hand is most accurate at about 12–15 lbs/in2. 
Which meter is better for this job?

P6.156 Ethanol at 208C fl ows down through a modern venturi noz-
zle as in Fig. P6.156. If the mercury manometer reading is 
4 in, as shown, estimate the fl ow rate, in gal/min.

P6.156 

d = 3 in

4 in

D = 6 in

9 in

P6.157 Modify Prob. P6.156 if the fl uid is air at 208C, entering the 
venturi at a pressure of 18 lbf/in2. Should a compressibility 
correction be used?

P6.158 Water at 208C fl ows in a long horizontal commercial steel 
6-cm-diameter pipe that contains a classical Herschel 
 venturi with a 4-cm throat. The venturi is connected to a 
mercury manometer whose reading is h 5 40 cm. Estimate 
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(a) the fl ow rate, in m3/h, and (b) the total pressure 
 difference between points 50 cm upstream and 50 cm 
downstream of the venturi.

P6.159 A modern venturi nozzle is tested in a laboratory fl ow with 
water at 208C. The pipe diameter is 5.5 cm, and the venturi 
throat diameter is 3.5 cm. The fl ow rate is measured by a 
weigh tank and the pressure drop by a water–mercury 
 manometer. The mass fl ow rate and manometer readings 
are as follows:

m
#
, kg/s 0.95 1.98 2.99 5.06 8.15

h, mm 3.7 15.9 36.2 102.4 264.4

Use these data to plot a calibration curve of venturi dis-
charge coeffi cient versus Reynolds number. Compare with 
the accepted correlation, Eq. (6.114).

Flowmeters: other designs

P6.160 An instrument popular in the beverage industry is the tar-
get fl owmeter in Fig. P6.160. A small fl at disk is mounted 
in the center of the pipe, supported by a strong but thin rod. 
(a) Explain how the fl owmeter works. (b) If the bending 
moment M of the rod is measured at the wall, derive a for-
mula for the estimated velocity of the fl ow. (c) List a few 
advantages and disadvantages of such an instrument.

Flow

P6.160

P6.161 An instrument popular in the water supply industry, 
sketched in Fig. P6.161, is the single jet water meter. 
(a)  How does it work? (b) What do you think a typical 
calibration curve would look like? (c) Can you cite further 
details, for example, reliability, head loss, cost [58]?

P6.161 

Flowmeters: compressibility correction

P6.162 Air fl ows at high speed through a Herschel venturi moni-
tored by a mercury manometer, as shown in Fig. P6.162. 
The upstream conditions are 150 kPa and 808C. If 
h 5 37 cm, estimate the mass fl ow in kg/s. (Hint: The fl ow 
is compressible.)

P6.163 Modify Prob. P6.162 as follows: Find the manometer 
 reading h for which the mass fl ow through the venturi is 
approximately 0.4 kg/s. (Hint: The fl ow is compressible.)

P6.162 

h

Air

D = 6 cm

d = 4 cm

Mercury

Word Problems

 W6.1 In fully developed straight-duct fl ow, the velocity profi les 
do not change (why?), but the pressure drops along the pipe 
axis. Thus there is pressure work done on the fl uid. If, say, 
the pipe is insulated from heat loss, where does this energy 
go? Make a thermodynamic analysis of the pipe fl ow.

 W6.2 From the Moody chart (Fig. 6.13), rough surfaces, such as 
sand grains or ragged machining, do not affect laminar fl ow. 

Can you explain why? They do affect turbulent fl ow. Can 
you develop, or suggest, an analytical–physical model of 
turbulent fl ow near a rough surface that might be used to 
predict the known increase in pressure drop?

 W6.3 Differentiation of the laminar pipe fl ow solution, Eq. 
(6.40), shows that the fl uid shear stress τ(r) varies linearly 
from zero at the axis to τw at the wall. It is claimed that this 
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is also true, at least in the time mean, for fully developed 
turbulent fl ow. Can you verify this claim analytically?

 W6.4 A porous medium consists of many tiny tortuous passages, 
and Reynolds numbers based on pore size are usually very 
low, of order unity. In 1856 H. Darcy proposed that the 
pressure gradient in a porous medium was directly propor-
tional to the volume-averaged velocity V of the fl uid:

§p 5 2
μ

K
 V

where K is termed the permeability of the medium. This is 
now called Darcy’s law of porous fl ow. Can you make a 

Poiseuille fl ow model of porous-media fl ow that verifi es 
Darcy’s law? Meanwhile, as the Reynolds number in-
creases, so that VK1/2/ν . 1, the pressure drop becomes 
nonlinear, as was shown experimentally by P. H. For-
scheimer as early as 1782. The fl ow is still decidedly lami-
nar, yet the pressure gradient is quadratic:

 §p 5 2
μ

K
 V 2 C ƒ V ƒV  Darcy-Forscheimer law

where C is an empirical constant. Can you explain the 
 reason for this nonlinear behavior?

Fundamentals of Engineering Exam Problems

 FE6.1 In fl ow through a straight, smooth pipe, the diameter 
Reynolds number for transition to turbulence is generally 
taken to be

  (a) 1500, (b) 2300, (c) 4000, (d) 250,000, (e) 500,000
 FE6.2 For fl ow of water at 208C through a straight, smooth pipe at 

0.06 m3/h, the pipe diameter for which transition to turbu-
lence occurs is approximately

  (a) 1.0 cm, (b) 1.5 cm, (c) 2.0 cm, (d) 2.5 cm, 
(e) 3.0 cm

 FE6.3 For fl ow of oil [μ 5 0.1 kg/(m ? s), SG 5 0.9] through a 
long, straight, smooth 5-cm-diameter pipe at 14 m3/h, the 
pressure drop per meter is approximately

  (a) 2200 Pa, (b) 2500 Pa, (c) 10,000 Pa, (d) 160 Pa, 
(e) 2800 Pa

 FE6.4 For fl ow of water at a Reynolds number of 1.03 E6 through 
a 5-cm-diameter pipe of roughness height 0.5 mm, the 
 approximate Moody friction factor is

  (a) 0.012, (b) 0.018, (c) 0.038, (d) 0.049, (e) 0.102
 FE6.5 Minor losses through valves, fi ttings, bends, contractions, 

and the like are commonly modeled as proportional to 
(a) total head, (b) static head, (c) velocity head, (d)  pressure 
drop, (e) velocity

 FE6.6 A smooth 8-cm-diameter pipe, 200 m long, connects two 
reservoirs, containing water at 208C, one of which has a 
surface elevation of 700 m and the other a surface elevation 
of 560 m. If minor losses are neglected, the expected fl ow 
rate through the pipe is

  (a) 0.048 m3/h, (b) 2.87 m3/h, (c) 134 m3/h, (d) 172 m3/h, 
(e) 385 m3/h

 FE6.7 If, in Prob. FE6.6 the pipe is rough and the actual fl ow rate 
is 90 m3/h, then the expected average roughness height of 
the pipe is approximately

  (a) 1.0 mm, (b) 1.25 mm, (c) 1.5 mm, (d) 1.75 mm, 
(e) 2.0 mm

 FE6.8 Suppose in Prob. FE6.6 the two reservoirs are connected, 
not by a pipe, but by a sharp-edged orifi ce of diameter 
8 cm. Then the expected fl ow rate is approximately

  (a) 90 m3/h, (b) 579 m3/h, (c) 748 m3/h, (d) 949 m3/h, 
(e) 1048 m3/h

 FE6.9 Oil [μ 5 0.1 kg/(m ? s), SG 5 0.9] fl ows through a 50-m-
long smooth 8-cm-diameter pipe. The maximum pressure 
drop for which laminar fl ow is expected is approximately

  (a) 30 kPa, (b) 40 kPa, (c) 50 kPa, (d) 60 kPa, (e) 70 kPa
 FE6.10 Air at 208C and approximately 1 atm fl ows through a 

smooth 30-cm-square duct at 1500 ft3/min. The expected 
pressure drop per meter of duct length is

  (a) 1.0 Pa, (b) 2.0 Pa, (c) 3.0 Pa, (d) 4.0 Pa, (e) 5.0 Pa
 FE6.11 Water at 208C fl ows at 3 m3/h through a sharp-edged 

3- cm-diameter orifi ce in a 6-cm-diameter pipe. Estimate 
the expected pressure drop across the orifi ce.

  (a) 440 Pa, (b) 680 Pa, (c) 875 Pa, (d) 1750 Pa, (e) 1870 Pa
 FE6.12 Water fl ows through a straight 10-cm-diameter pipe at a 

diameter Reynolds number of 250,000. If the pipe rough-
ness is 0.06 mm, what is the approximate Moody friction 
factor?

  (a) 0.015, (b) 0.017, (c) 0.019, (d) 0.026, (e) 0.032
 FE6.13 What is the hydraulic diameter of a rectangular air- 

ventilation duct whose cross section is 1 m by 25 cm?
  (a) 25 cm, (b) 40 cm, (c) 50 cm, (d) 75 cm, (e) 100 cm
 FE6.14 Water at 208C fl ows through a pipe at 300 gal/min with a 

friction head loss of 45 ft. What is the power required to 
drive this fl ow?

  (a) 0.16 kW, (b) 1.88 kW, (c) 2.54 kW, (d) 3.41 kW, 
(e) 4.24 kW

 FE6.15 Water at 208C fl ows at 200 gal/min through a pipe 150 m 
long and 8 cm in diameter. If the friction head loss is 12 m, 
what is the Moody friction factor?

  (a) 0.010, (b) 0.015, (c) 0.020, (d) 0.025, (e) 0.030
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Comprehensive Problems

 C6.1 A pitot-static probe will be used to measure the velocity 
distribution in a water tunnel at 208C. The two pressure 
lines from the probe will be connected to a U-tube manom-
eter that uses a liquid of specifi c gravity 1.7. The maximum 
velocity expected in the water tunnel is 2.3 m/s. Your job is 
to select an appropriate U-tube from a manufacturer that 
supplies manometers of heights 8, 12, 16, 24, and 36 in. 
The cost increases signifi cantly with manometer height. 
Which of these should you purchase?

 *C6.2 A pump delivers a steady fl ow of water (ρ, μ) from a large 
tank to two other higher-elevation tanks, as shown in Fig. 
C6.2. The same pipe of diameter d and roughness ε is used 
throughout. All minor losses except through the valve are 

neglected, and the partially closed valve has a loss coeffi -
cient Kvalve. Turbulent fl ow may be assumed with all kinetic 
energy fl ux correction coeffi cients equal to 1.06. The pump 
net head H is a known function of QA and hence also of VA 5 
QA/Apipe; for example, H 5 a 2 bV2

A, where a and b are 
constants. Subscript J refers to the junction point at the tee 
where branch A splits into B and C. Pipe length LC is much 
longer than LB. It is desired to predict the pressure at J, the 
three pipe velocities and friction factors, and the pump 
head. Thus there are eight variables: H, VA, VB, VC, fA, fB, fC, 
pJ. Write down the eight equations needed to resolve this 
problem, but do not solve, since an elaborate iteration pro-
cedure would be required.

   C6.2 

Large tank

Large tank

Branch A, LA
Branch C, LC

Branch B, LB

Pump

VA

VB

VC

Large tank

Valve
1

2

3

J

 C6.3 A small water slide is to be installed inside a swimming 
pool. See Fig. C6.3. The slide manufacturer recommends a 
continuous water fl ow rate Q of 1.39 3 1023 m3/s (about 
22 gal/min) down the slide, to ensure that the customers do 
not burn their bottoms. A pump is to be installed under the 
slide, with a 5.00-m-long, 4.00-cm-diameter hose supply-
ing swimming pool water for the slide. The pump is 
80  percent effi cient and will rest fully submerged 1.00 m 
below the water surface. The roughness inside the hose is 
about 0.0080 cm. The hose discharges the water at the top 
of the slide as a free jet open to the atmosphere. The hose 
outlet is 4.00 m above the water surface. For fully devel-
oped turbulent pipe fl ow, the kinetic energy fl ux correction 
factor is about 1.06. Ignore any minor losses here. Assume 
that ρ 5 998 kg/m3 and υ 5 1.00 3 1026 m2/s for this 
water. Find the brake horsepower (that is, the actual shaft 
power in watts) required to drive the pump.

 *C6.4 Suppose you build a rural house where you need to run a 
pipe to the nearest water supply, which is fortunately at an 
elevation of about 1000 m above that of your house. 

The pipe will be 6.0 km long (the distance to the water sup-
ply), and the gage pressure at the water supply is 1000 kPa. 
You require a minimum of 3.0 gal/min of water when the 
end of your pipe is open to the atmosphere. To minimize 
cost, you want to buy the smallest-diameter pipe possible. 
The pipe you will use is extremely smooth. (a) Find the 
total head loss from the pipe inlet to its exit. Neglect any 
minor losses due to valves, elbows, entrance lengths, and 
so on, since the length is so long here and major losses 
dominate. Assume the outlet of the pipe is open to the 
 atmosphere. (b) Which is more important in this problem, 
the head loss due to elevation difference or the head loss 
due to pressure drop in the pipe? (c) Find the minimum 
required pipe diameter.

 C6.5 Water at room temperature fl ows at the same volume fl ow 
rate, Q 5 9.4 3 1024 m3/s, through two ducts, one a round 
pipe and one an annulus. The cross-sectional area A of the 
two ducts is identical, and all walls are made of commer-
cial steel. Both ducts are the same length. In the cross sec-
tions shown in Fig. C6.5 R 5 15.0 mm and a 5 25.0 mm.
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R

A

b a

C6.5

(a) What is the radius b such that the cross-sectional areas 
of the two ducts are identical? (b) Compare the frictional 
head loss hf per unit length of pipe for the two cases, 
 assuming fully developed fl ow. For the annulus, do both a 
quick estimate (using the hydraulic diameter) and a more 
accurate estimate (using the effective diameter correction), 
and compare. (c) If the losses are different for the two 
cases, explain why. Which duct, if any, is more “effi cient”?

 C6.6 John Laufer (NACA Tech Rep. 1174, 1954) gave velocity data 
208C airfl ow in a smooth 24.7-cm-diameter pipe at Re < 5 E5:

u/uCL 1.0 0.997 0.988 0.959 0.908 0.847 0.818 0.771 0.690

r/R 0.0 0.102 0.206 0.412 0.617 0.784 0.846 0.907 0.963
Source: John Laufer (NASA Tech Rep. 1174, 1954)

The centerline velocity uCL was 30.5 m/s. Determine (a) 
the average velocity by numerical integration and (b) the 
wall shear stress from the log law approximation. Compare 
with the Moody chart and with Eq. (6.43).

 C6.7 Consider energy exchange in fully developed laminar fl ow 
between parallel plates, as in Eqs. (6.60). Let the pressure 
drop over a length L be Dp. Calculate the rate of work done 
by this pressure drop on the fl uid in the region (0 , x , L, 
2h , y , 1h) and compare with the integrated energy 
dissipated due to the viscous function F from Eq. (4.50) 
over this same region. The two should be equal. Explain 
why this is so. Can you relate the viscous drag force and the 
wall shear stress to this energy result?

 C6.8 This text has presented the traditional correlations for the 
turbulent smooth-wall friction factor, Eq. (6.38), and the 
law of the wall, Eq. (6.28). Recently, groups at Princeton 
and Oregon [56] have made new friction measurements 
and suggest the following smooth-wall friction law:

 
1

1f 
5 1.930 log10(ReD1f ) 2 0.537

In earlier work, they also report that better values for the 
constants κ and B in the log-law, Eq. (6.28), are κ < 0.421 
6 0.002 and B < 5.62 6 0.08. (a) Calculate a few values 
of f in the range 1 E4 < ReD < 1 E8 and see how the two 
formulas differ. (b) Read Ref. 56 and briefl y check the fi ve 
papers in its bibliography. Report to the class on the gen-
eral results of this work.

 C6.9 A pipeline has been proposed to carry natural gas 1715 miles 
from Alaska’s North Slope to Calgary, Alberta, Canada. 
The (assumed smooth) pipe diameter will be 52 in. The gas 
will be at high pressure, averaging 2500 lbs/in2. (a) Why? 
The proposed fl ow rate is 4 billion cubic feet per day at sea-
level conditions. (b) What volume fl ow rate, at 208C, would 
carry the same mass at the high pressure? (c) If natural gas 
is assumed to be methane (CH4), what is the total pressure 
drop? (d) If each pumping station can deliver 12,000 hp to 
the fl ow, how many stations are needed?

Q

Pump
Sliding board

Tube4.00 m
Weee!

Ladder

Water 1.00 m

C6.3
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Design Projects

 D6.1 A hydroponic garden uses the 10-m-long perforated-pipe 
system in Fig. D6.1 to deliver water at 208C. The pipe is 
5 cm in diameter and contains a circular hole every 20 cm. 
A pump delivers water at 75 kPa (gage) at the entrance, 
while the other end of the pipe is closed. If you attempted, 
for example, Prob. P3.125, you know that the pressure near 
the closed end of a perforated “manifold” is surprisingly 
high, and there will be too much fl ow through the holes 
near that end. One remedy is to vary the hole size along the 
pipe axis. Make a design analysis, perhaps using a personal 
computer, to pick the optimum hole size distribution that 
will make the discharge fl ow rate as uniform as possible 
along the pipe axis. You are constrained to pick hole sizes 
that correspond only to commercial (numbered) metric 
drill-bit sizes available to the typical machine shop.

 D6.2 It is desired to design a pump-piping system to keep a 
1-million-gallon capacity water tank fi lled. The plan is to 
use a modifi ed (in size and speed) version of the model 
1206 centrifugal pump manufactured by Taco Inc., 
 Cranston, Rhode Island. Test data have been provided to us 
by Taco Inc. for a small model of this pump: D 5 5.45 in, 
V 5 1760 r/min, tested with water at 208C:

Q, gal/min 0 5 10 15 20 25 30 35 40 45 50 55 60

H, ft 28 28 29 29 28 28 27 26 25 23 21 18 15

Effi ciency, % 0 13 25 35 44 48 51 53 54 55 53 50 45

The tank is to be fi lled daily with rather chilly (108C) 
groundwater from an aquifer, which is 0.8 mi from the tank 
and 150 ft lower than the tank. Estimated daily water use is 
1.5 million gal/day. Filling time should not exceed 8 h per 
day. The piping system should have four “butterfl y” valves 

with variable openings (see Fig. 6.19), 10 elbows of vari-
ous angles, and galvanized iron pipe of a size to be selected 
in the design. The design should be economical—both in 
capital costs and operating expense. Taco Inc. has provided 
the following cost estimates for system components:

  Pump and motor  $3500 plus $1500 per inch of impeller size
  Pump speed Between 900 and 1800 r/min
  Valves $300 1 $200 per inch of pipe size
  Elbows  $50 plus $50 per inch of pipe size
  Pipes  $1 per inch of diameter per foot of length
  Electricity cost 10¢ per kilowatt-hour

  Your design task is to select an economical pipe size and 
pump impeller size and speed for this task, using the pump 
test data in nondimensional form (see Prob. P5.61) as de-
sign data. Write a brief report (fi ve to six pages) showing 
your calculations and graphs.

10 m

20 cm

Pump

D6.1
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 20. R. W. Jeppson, Analysis of Flow in Pipe Networks, 
 Butterworth-Heinemann, Woburn, MA, 1976.

 21. R. W. Fox and S. J. Kline, “Flow Regime Data and Design 
Methods for Curved Subsonic Diffusers,” J. Basic Eng., 
vol. 84, 1962, pp. 303–312.

 22. R. C. Baker, Flow Measurement Handbook: Industrial 
 Designs, Operating Principles, Performance, and Applica-
tions, Cambridge University Press, New York, 2005.

 23. R. W. Miller, Flow Measurement Engineering Handbook, 3d 
edition, McGraw-Hill, New York, 1997.

 24. B. Warren and C. Wunsch (eds.), Evolution of Physical 
Oceanography, M.I.T. Press, Cambridge, MA, 1981.

 25. U.S. Department of Commerce, Tidal Current Tables, 
 National Oceanographic and Atmospheric Administration, 
Washington, DC, 1971.

 26. J. A. Shercliff, Electromagnetic Flow Measurement, 
 Cambridge University Press, New York, 1962.

 27. J. A. Miller, “A Simple Linearized Hot-Wire Anemometer,” 
J. Fluids Eng., December 1976, pp. 749–752.

 28. R. J. Goldstein (ed.), Fluid Mechanics Measurements, 2d ed., 
Hemisphere, New York, 1996.

 29. D. Eckardt, “Detailed Flow Investigations within a High 
Speed Centrifugal Compressor Impeller,” J. Fluids Eng., 
September 1976, pp. 390–402.

 30. H. S. Bean (ed.), Fluid Meters: Their Theory and Applica-
tion, 6th ed., American Society of Mechanical Engineers, 
New York, 1971.

 31. “Measurement of Fluid Flow by Means of Orifi ce Plates, 
Nozzles, and Venturi Tubes Inserted in Circular Cross 
 Section Conduits Running Full,” Int. Organ. Stand. Rep. 
DIS-5167, Geneva, April 1976.

 32. P. Sagaut and C. Meneveau, Large Eddy Simulation for 
 Incompressible Flows: An Introduction, 3d ed., Springer, 
New York, 2006.

 33. S. E. Haaland, “Simple and Explicit Formulas for the Friction 
Factor in Turbulent Pipe Flow,” J. Fluids Eng., March 1983, 
pp. 89–90.

 34. R. K. Shah and A. L. London, Laminar Flow Forced Convec-
tion in Ducts, Academic, New York, 1979.

 35. P. L. Skousen, Valve Handbook, 3d ed. McGraw-Hill, New 
York, 2011.

 36. W. Li, W.-X. Chen, and S.-Z. Xie, “Numerical Simulation of 
Stress-Induced Secondary Flows with Hybrid Finite Analytic 
Method,” Journal of Hydrodynamics, vol. 14, no. 4, 
December 2002, pp. 24–30.

 37. ASHRAE Handbook—2012 Fundamentals, ASHRAE, 
 Atlanta, GA, 2012.

 38. F. Durst, A. Melling, and J. H. Whitelaw, Principles and 
Practice of Laser-Doppler Anemometry, 2d ed., Academic, 
New York, 1981.

 39. A. P. Lisitsyn et al., Laser Doppler and Phase Doppler Mea-
surement Techniques, Springer-Verlag, New York, 2003.

 40. J. E. Amadi-Echendu, H. Zhu, and E. H. Higham, “Analysis 
of Signals from Vortex Flowmeters,” Flow Measurement and 
Instrumentation, vol. 4, no. 4, Oct. 1993, pp. 225–231.

 41. G. Vass, “Ultrasonic Flowmeter Basics,” Sensors, vol. 14, 
no. 10, Oct. 1997, pp. 73–78.

 42. ASME Fluid Meters Research Committee, “The ISO-ASME 
Orifi ce Coeffi cient Equation,” Mech. Eng. July 1981, 
pp. 44–45.

 43. R. D. Blevins, Applied Fluid Dynamics Handbook, Van 
 Nostrand Reinhold, New York, 1984.

 44. O. C. Jones, Jr., and J. C. M. Leung, “An Improvement in the 
Calculation of Turbulent Friction in Smooth Concentric 
 Annuli,” J. Fluids Eng., December 1981, pp. 615–623.

 45. P. R. Bandyopadhyay, “Aspects of the Equilibrium Puff in 
Transitional Pipe Flow,” J. Fluid Mech., vol. 163, 1986, 
pp. 439–458.



446 Chapter 6 Viscous Flow in Ducts

 46. I. E. Idelchik, Handbook of Hydraulic Resistance, 3d ed., 
CRC Press, Boca Raton, FL, 1993.

 47. S. Klein and W. Beckman, Engineering Equation Solver 
(EES), University of Wisconsin, Madison, WI, 2014.

 48. R. D. Coffi eld, P. T. McKeown, and R. B. Hammond, 
“ Irrecoverable Pressure Loss Coeffi cients for Two Elbows in 
Series with Various Orientation Angles and Separation 
 Distances,” Report WAPD-T-3117, Bettis Atomic Power 
Laboratory, West Miffl in, PA, 1997.

 49. H. Ito, “Pressure Losses in Smooth Pipe Bends,” Journal of 
Basic Engineering, March 1960, pp. 131–143.

 50. A. H. Gibson, “On the Flow of Water through Pipes and 
 Passages,” Proc. Roy. Soc. London, Ser. A, vol. 83, 1910, 
pp. 366–378.

 51. M. Raffel et al., Particle Image Velocimetry: A Practical 
Guide, 2d ed., Springer, New York, 2007.

 52. Crane Co., Flow of Fluids through Valves, Fittings, and Pipe, 
Crane, Stanford, CT, 2009.

 53. S. A. Berger, L. Talbot, and L.-S. Yao, “Flow in Curved 
Pipes,” Annual Review of Fluid Mechanics, vol. 15, 1983, 
pp. 461–512.

 54. P. L. Spedding, E. Benard, and G. M. McNally, “Fluid Flow 
through 908 Bends,” Developments in Chemical Engineering 
and Mineral Processing, vol. 12, nos. 1–2, 2004, pp. 107–128.

 55. R. R. Kerswell, “Recent Progress in Understanding the Tran-
sition to Turbulence in a Pipe,” Nonlinearity, vol. 18, 2005, 
pp. R17–R44.

 56. B. J. McKeon et al., “Friction Factors for Smooth Pipe Flow,” 
J. Fluid Mech., vol. 511, 2004, pp. 41–44.

 57. M. Bahrami, M. M. Yovanovich, and J. R. Culham, “Pressure 
Drop of Fully-Developed Laminar Flow in Microchannels of 
Arbitrary Cross-Section,” J. Fluids Engineering, vol. 128, 
Sept. 2006, pp. 1036–1044.

 58. G. S. Larraona, A. Rivas, and J. C. Ramos, “Computa-
tional Modeling and Simulation of a  Single-Jet Water Me-
ter,” J. Fluids Engineering, vol. 130, May 2008, pp. 
0511021–05110212.

 59. C. Spiegel, Designing and Building Fuel Cells, McGraw-
Hill, New York, 2007.

 60. B. A. Finlayson et al., Microcomponent Flow Characteriza-
tion, Chap. 8 of Micro Instrumentation, M. V. Koch (Ed.), 
John Wiley, Hoboken, NJ, 2007.


	ch6
	2



