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  Chapter     5  
  Dimensional     Analysis   

  and     Similarity  

  Motivation.     In this chapter we discuss the planning, presentation, and interpretation 
of exper  i  mental data. We shall try to convince you that such data are best presented 
in   dimensionless   form. Experiments that might result in tables of output, or even 
multiple volumes of tables, might be r  e  duced to a single set of curves—or even a 
single curve—when suitably nondimensionalized. The technique for doing this is  
 dimensional     analysis.     It is also effective in theoretical studies.  
   Chapter 3 presented large-scale control volume balances of mass, momentum, and 
energy, which led to global results: mass fl ow, force, torque, total work done, or heat 
transfer. Chapter 4 presented infi nitesimal balances that led to the basic partial dif-
ferential equations of fl uid fl ow and some particular solutions for both inviscid and 
viscous (laminar) fl ow. These straight   analytical   techniques are limited to simple 
geometries and uniform boundary conditions. Only a fraction of engineering fl ow 
problems can be solved by direct analytical formulas.  
   Most practical fl uid fl ow problems are too complex, both geometrically and physi-
cally, to be solved analytically. They must be tested by experiment or approximated 
by computational fl uid dynamics (CFD) [2]. These results are typically reported as 
experimental or numerical data points and smoothed curves. Such data have much 
more generality if they are expressed in compact, economic form. This is the motiva-
tion for dimensional analysis. The technique is a mainstay of fl uid mechanics and is 
also widely used in all engineering fi elds plus the physical, biological, medical, and 
social sciences. The present chapter shows how dimensional analysis improves the 
presentation of both data and theory.  

    5.1     Introduction   Basically, dimensional analysis is a method for reducing the number and complexity of 
experimental variables that affect a given physical phenomenon, by using a sort of com-
pacting technique. If a phenomenon depends on   n     dimensional variables, dimensional 
analysis will reduce the problem to only   k     dimensionless     variables, where the reduction  
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286 Chapter 5 Dimensional Analysis and Similarity 

 n     2     k     5     1, 2, 3, or 4, depending on the problem complexity. Generally   n     2     k     equals   
  the     number     of     different     dimensions (sometimes called basic or primary or fundamental 
dimensions) that govern the problem. In fl uid mechanics, the four basic dimensions are 
usually taken to be mass   M  , length   L  , time   T  , and temperature  Q   , or an   MLT  Q system 
for short. Alternatively, one uses an   FLT  Q system, with force   F     replacing mass.  
   Although its purpose is to reduce variables and group them in dimensionless form, 
dime  n  sional analysis has several side benefi ts. The fi rst is enormous savings in time 
and money. Suppose one knew that the force   F     on a particular body shape immersed 
in a stream of fl uid depended only on the body length   L  , stream velocity   V  , fl uid 
density   ρ  , and fl uid viscosity   μ  ; that is,  

 F 5 f(L, V, ρ, μ) (5.1)

  Suppose further that the geometry and fl ow conditions are so complicated that our inte-
gral theories (Chap. 3) and differential equations (Chap. 4) fail to yield the solution for 
the force. Then we must fi nd the function   f  (  L  ,   V  ,   ρ  ,   μ  ) experimentally or numerically.  
   Generally speaking, it takes about 10 points to defi ne a curve. To fi nd the effect of body 
length in Eq. (5.1), we have to run the experiment for 10 lengths   L  . For each   L     we need 
10 values of   V  , 10 values of   ρ  , and 10 values of   μ  , making a grand total of 10  4  , or 10,000, 
experiments. At $100 per experiment—well, you see what we are getting into. However, 
with dimensional analysis, we can immediately reduce Eq. (5.1) to the equivalent form  

  
F

ρV 
2L2 5 g aρVL

μ
b 

(5.2)
  or      CF 5 g(Re)      

  That is, the dimensionless   force     coeffi cient     F  /(  ρ  V  2  L  2  ) is a function only of the dimen-
sionless   Rey  n  olds     number     ρ  VL  /  μ  . We shall learn exactly how to make this reduction 
in Secs. 5.2 and 5.3. Equation (5.2) will be useful in Chap. 7.  
   Note that Eq. (5.2) is just an   example,   not the full story, of forces caused by fl uid 
fl ows. Some fl uid forces have a very weak or negligible Reynolds number dependence 
in wide regions (Fig. 5.3  a  ). Other groups may also be important. The force coeffi cient 
may depend, in high-speed gas fl ow, on the   Mach     number  , Ma   5   V/a  , where   a   is the 
speed of sound. In free-surface fl ows, such as ship drag,   C  F   may depend upon   Froude   
  number  , Fr   5   V  2  /(  gL  ), where   g   is the acceleration of gravity. In turbulent fl ow, force may 
depend upon the   roughness     ratio  ,   �  /  L  , where   �   is the roughness height of the surface.  
   The function   g     is different mathematically from the original function   f  , but it con-
tains all the same information. Nothing is lost in a dimensional analysis. And think 
of the savings: We can e  s  tablish   g     by running the experiment for only 10 values of 
the single variable called the Reynolds number. We do not have to vary   L  ,   V  ,   ρ  , or  
 μ   separately but only the   grouping     ρ  VL  /  μ  . This we do merely by varying velocity   V   
  in, say, a wind tunnel or drop test or water channel, and there is no need to build 10 
different bodies or fi nd 100 different fl uids with 10 densities and 10 viscosities. The 
cost is now about $1000, maybe less.  
   A second side benefi t of dimensional analysis is that it helps our thinking and plan-
ning for an experiment or theory. It suggests dimensionless ways of writing equations 
before we spend money on computer analysis to fi nd solutions. It suggests variables 
that can be discarded; sometimes d  i  mensional analysis will immediately reject 
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5.1  Introduction 287

variables, and at other times it groups them off to the side, where a few simple tests 
will show them to be unimportant. Finally, dimensional analysis will often give a great 
deal of insight into the form of the physical relationship we are trying to study.  
   A third benefi t is that dimensional analysis provides   scaling     laws     that can convert 
data from a cheap, small   model     to design information for an expensive, large   proto-
type  . We do not build a mi  l  lion-dollar airplane and see whether it has enough lift 
force. We measure the lift on a small model and use a scaling law to predict the lift 
on the full-scale prototype airplane. There are rules we shall explain for fi nding scal-
ing laws. When the scaling law is valid, we say that a condition of   similarity     exists 
between the model and the prototype. In the simple case of Eq. (5.1), similarity is 
achieved if the Reynolds number is the same for the model and prototype because 
the function   g     then requires the force coeffi cient to be the same also:  

   If Rem 5 Rep   then   CFm 5 CFp       (5.3)  

  where subscripts   m     and   p     mean model and prototype, respectively. From the defi nition 
of force coeffi cient, this means that  

  
Fp

Fm
5

ρp

ρm
 aVp

Vm
b2a Lp

Lm
b2

  (5.4)  

  for data taken where   ρ  p  V  p  L  p  /  μ  p     5     ρ  m  V  m  L  m  /  μ  m  . Equation (5.4) is a scaling law: If you 
measure the model force at the model Reynolds number, the prototype force at the 
same Reynolds number equals the model force times the density ratio times the veloc-
ity ratio squared times the length ratio squared. We shall give more examples later.  
   Do you understand these introductory explanations? Be careful; learning dimensional 
ana  l  ysis is like learning to play tennis: There are levels of the game. We can establish 
some ground rules and do some fairly good work in this brief chapter, but dimensional 
analysis in the broad view has many subtleties and nuances that only time, practice, and 
maturity enable you to master. Although dimensional analysis has a fi rm physical and 
mathematical foundation, considerable art and skill are needed to use it effectively.  

  EXAMPLE     5.1  

  A copepod is a water crustacean approximately 1 mm in diameter. We want to know the 
drag force on the copepod when it moves slowly in fresh water. A scale model 100 times 
larger is made and tested in glycerin at   V     5     30 cm/s. The measured drag on the model is 
1.3 N. For similar conditions, what are the velocity and drag of the actual copepod in water? 
Assume that Eq. (5.2) applies and the temperature is 20  8  C.  

  Solution  

  •   Property     values:     From Table A.3, the densities and viscosities at 20  8  C are  

   Water (prototype):     μ  p   5 0.001 kg/(m-s)     ρ  p     5 998 kg/m  3  

   Glycerin (model):     μ  m     5 1.5 kg/(m-s)      ρ  m     5 1263 kg/m  3  

  •   Assumptions:     Equation (5.2) is appropriate and   similarity   is achieved; that is, the model 
and prototype have the same Reynolds number and, therefore, the same force coeffi cient.  
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288 Chapter 5 Dimensional Analysis and Similarity 

 
  •     Approach:     The length scales are   L  m     5 100 mm and   L  p     5 1 mm. Calculate the Reynolds 

number and force coeffi cient of the model and set them equal to prototype values:  

Rem 5
ρmVm Lm

μm
5

(1263 kg/m3)(0.3 m/s)(0.1 m)

1.5 kg/(m-s)
5 25.3 5 Rep 5

(998 kg/m3)Vp(0.001 m)

0.001 kg/(m-s)

 Solve for Vp 5 0.0253 m/s 5 2.53 cm/s Ans.

 In like manner, using the prototype velocity just found, equate the force coeffi cients:

 CFm 5
Fm

ρmV 2
mL2

m

5
1.3 N

(1263 kg/m3)(0.3 m/s)2(0.1 m)2 5 1.14

  5 CFp 5  
Fp

(998 kg/m3)(0.0253 m/s)2(0.001 m)2

 Solve for Fp 5 7.3E-7 N Ans.

  •     Comments:     Assuming we modeled the Reynolds number correctly, the model test is a very 
good idea, as it would obviously be diffi cult to measure such a tiny copepod drag force.  

   Historically, the fi rst person to write extensively about units and dimensional rea-
soning in physical relations was Euler in 1765. Euler’s ideas were far ahead of his 
time, as were those of Joseph Fourier, whose 1822 book   Analytical     Theory     of     Heat   
  outlined what is now called the   principle     of     dimensional     homogeneity     and even devel-
oped some similarity rules for heat fl ow. There were no further signifi cant advances 
until Lord Rayleigh’s book in 1877,   Theory     of     Sound,     which proposed a “method of 
dimensions” and gave several examples of dimensional analysis. The fi nal break-
through that established the method as we know it today is generally credited to E. 
Buckingham in 1914 [1], whose paper outlined what is now called the   Buckingham   
  Pi     Theorem     for describing dimensionless parameters (see Sec. 5.3). However, it is 
now known that a Frenchman, A. Vaschy, in 1892 and a Russian, D. Riabouchinsky, 
in 1911 had independently published papers reporting results equiv  a  lent to the pi 
theorem. Following Buckingham’s paper, P. W. Bridgman published a classic book 
in 1922 [3], outlining the general theory of dimensional analysis.  
   Dimensional analysis is so valuable and subtle, with both skill and art involved, that 
it has spawned a wide variety of textbooks and treatises. The writer is aware of more 
than 30 books on the subject, of which his engineering favorites are listed here [3–10]. 
Dimensional analysis is not co  n  fi ned to fl uid mechanics, or even to engineering. 
 Specialized books have been published on the application of dimensional analysis to 
metrology [11], astrophysics [12], economics [13], chemistry [14], hydrology [15], medi-
cations [16], clinical medicine [17], chemical processing pilot plants [18], social sciences 
[19], biomedical sciences [20], pharmacy [21], fractal geometry [22], and even the 
growth of plants [23]. Clearly this is a subject well worth learning for many career paths.  

  5.2     The     Principle     of   
  Dimensional     Homogeneity  

   In making the remarkable jump from the fi ve-variable Eq. (5.1) to the two-variable 
Eq. (5.2), we were exploiting a rule that is almost a self-evident axiom in physics. This 
rule, the   principle     of     dimensional     homogeneity     (PDH), can be stated as follows:  

rev
Highlight



5.2  The Principle of Dimensional Homogeneity 289

  If an equation truly expresses a proper relationship between variables in a physical process, 
it will be   dimensionally     homogeneous;     that is, each of its additive terms will have the same 
dimensions.  

  All the equations that are derived from the theory of mechanics are of this form. For 
example, co  n  sider the relation that expresses the displacement of a falling body:  

 S 5 S0 1 V0t 1 1
2gt2 (5.5)

  Each term in this equation is a displacement, or length, and has dimensions {  L  }. The 
equation is dimensionally homogeneous. Note also that any consistent set of units can 
be used to calculate a result.  
   Consider Bernoulli’s equation for incompressible fl ow:  

 
p

ρ
1

1

2
V2 1 gz 5 const (5.6)

  Each term, including the constant, has dimensions of velocity squared, or {  L  2  T   2  2  }. 
The equation is dimensionally homogeneous and gives proper results for any consis-
tent set of units.  
   Students count on dimensional homogeneity and use it to check themselves when 
they cannot quite remember an equation during an exam. For example, which is it:  

 S 5 1
2gt2?   or   S 5 1

2g
2t? (5.7)

  By checking the dimensions, we reject the second form and back up our faulty mem-
ory. We are exploiting the principle of dimensional homogeneity, and this chapter 
simply exploits it further.  

    Variables     and     Constants   Equations (5.5) and (5.6) also illustrate some other factors that often enter into a 
dimensional analysis:  

  Dimensional     variables     are the quantities that actually vary during a given case 
and would be plotted against each other to show the data. In Eq. (5.5), they 
are   S     and   t  ;     in Eq. (5.6) they are   p  ,   V  , and   z  . All have dimensions, and all 
can be nondimensionalized as a dimensional analysis technique.  

  Dimensional     constants     may vary from case to case but are held constant during 
a given run. In Eq. (5.5) they are   S  0  ,   V  0  , and   g  , and in Eq. (5.6) they are   ρ  ,   g  , 
and   C  . They all have dimensions and conceivably could be nondimensional-
ized, but they are normally used to help nondimensionalize the variables in 
the problem.  

  Pure     constants     have no dimensions and never did. They arise from mathematical 
manipulations. In both Eqs. (5.5) and (5.6) they are   12   and the exponent 2, 
both of which came from an integration:   et dt 5 1

2t
2, eV dV 5 1

2V
2.   Other 

common dimensionless constants are   π   and   e  . Also, the argument of any 
mathematical function, such as ln, exp, cos, or J  0  , is dimensionless.  

  Angles   and   revolutions   are dimensionless. The preferred unit for an angle is the 
radian, which makes it clear that an angle is a ratio. In like manner, a revolu-
tion is 2  π   radians.  
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  Counting     numbers   are dimensionless. For example, if we triple the energy   E   to 
3  E  , the coeffi cient 3 is dimensionless.  

   Note that integration and differentiation of an equation may change the dimen-
sions but not the homogeneity of the equation. For example, integrate or differenti-
ate Eq. (5.5):  

 #  S dt 5 S0t 1 1
2V0t

2 1 1
6gt3 (5.8a)

 
dS

dt
5 V0 1 gt (5.8b)

  In the integrated form (5.8  a  ) every term has dimensions of {  LT  }, while in the deriva-
tive form (5.8  b  ) every term is a velocity {  LT  2  1  }.  
   Finally, some physical variables are naturally dimensionless by virtue of their defi -
nition as ratios of dimensional quantities. Some examples are strain (change in length 
per unit length), Poisson’s ratio (ratio of transverse strain to longitudinal strain), and 
specifi c gravity (ratio of density to standard water density).  
   The motive behind dimensional analysis is that any dimensionally homogeneous 
equation can be written in an entirely equivalent nondimensional form that is more 
compact. Usually there are multiple methods of presenting one’s dimensionless data 
or theory. Let us illustrate these concepts more thoroughly by using the falling-body 
relation (5.5) as an example.  

  Ambiguity:     The     Choice     of   
  Variables     and     Scaling     Parameters  1  

   Equation (5.5) is familiar and simple, yet it illustrates most of the concepts of dimen-
sional analysis. It contains fi ve terms (  S  ,   S  0  ,   V  0  ,   t  ,   g  ), which we may divide, in our 
thinking, into variables and p  a  rameters. The   variables     are the things we wish to plot, 
the basic output of the experiment or theory: in this case,   S     versus   t  . The   parameters   
  are those quantities whose effect on the variables we wish to know: in this case   S  0  ,  
 V  0  , and   g  . Almost any engineering study can be subdivided in this manner.  
   To nondimensionalize our results, we need to know how many dimensions are 
contained among our variables and parameters: in this case, only two, length {  L  } and 
time {  T  }. Check each term to verify this:  5S6 5 5S06 5 5L6    5t6 5 5T6    5V06 5 5LT216    5g6 5 5LT 226
  Among our parameters, we therefore select two to be   scaling     parameters   (also called  
 repeating     variables  ), used to defi ne dimensionless variables. What remains will be 
the “basic” parameter(s) whose effect we wish to show in our plot. These choices will 
not affect the content of our data, only the form of their presentation. Clearly there 
is ambiguity in these choices, something that often vexes the beginning experimenter. 
But the ambiguity is deliberate. Its purpose is to show a particular effect, and the 
choice is yours to make.  
   For the falling-body problem, we select any two of the three parameters to be scal-
ing p  a  rameters. Thus, we have three options. Let us discuss and display them in turn.  

1I am indebted to Prof. Jacques Lewalle of Syracuse University for suggesting, outlining, and clari-
fying this entire discussion.
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  Option     1:     Scaling parameters   S  0 and   V  0  : the effect of gravity   g  .  
   First use the scaling parameters (  S  0  ,   V  0  ) to defi ne dimensionless (*) displacement 
and time. There is only one suitable defi nition for each:  2  

 S* 5
S

S0
     t* 5

V0t

S0
 (5.9)

  Substitute these variables into Eq. (5.5) and clean everything up until each term is 
dimensionless. The result is our fi rst option:  

 S* 5 1 1 t* 1
1

2
αt*2    α 5

gS0

V2
0

  (5.10)

  This result is shown plotted in Fig. 5.1  a  . There is a single dimensionless parameter  
 α  , which shows here the effect of gravity. It cannot show the direct effects of   S  0  and 
 V  0  , since these two are hidden in the ordinate and abscissa. We see that gravity 
increases the parabolic rate of fall for   t  *     .     0, but not the initial slope at   t  *     5     0. We 
would learn the same from falling-body data, and the plot, within experimental accu-
racy, would look like Fig. 5.1  a  .  

  Option     2:     Scaling parameters   V  0 and   g  : the effect of initial displacement   S  0  .  
   Now use the new scaling parameters (  V  0  ,   g  ) to defi ne dimensionless (**) displace-
ment and time. Again there is only one suitable defi nition:  

 S** 5
Sg

V0
2    t** 5 t 

g

V0
 (5.11)

  Substitute these variables into Eq. (5.5) and clean everything up again. The result is 
our second option:  

 S** 5 α 1 t** 1
1

2
 t**2    α 5

gS0

V2
0

 (5.12)

  This result is plotted in Fig. 5.1  b  . The same single parameter   α   again appears and 
here shows the effect of initial   displacement,     which merely moves the curves upward 
without changing their shape.  

  Option     3:     Scaling parameters   S  0 and   g  : the effect of initial speed   V  0  .  
   Finally use the scaling parameters (  S  0  ,   g  ) to defi ne dimensionless (***) displace-
ment and time. Again there is only one suitable defi nition:  

 S*** 5
S

S0
    t*** 5 t a g

S0
b1/2

  (5.13)

  Substitute these variables into Eq. (5.5) and clean everything up as usual. The result 
is our third and fi nal option:  

 S*** 5 1 1 βt*** 1
1

2
t***2    β 5

1

1α
5

V0

1gS0

 (5.14)

2Make them proportional to S and t. Do not defi ne dimensionless terms upside down: S0/S or S0/(V0t). 
The plots will look funny, users of your data will be confused, and your supervisor will be angry. It is 
not a good idea.



292 Chapter 5 Dimensional Analysis and Similarity 

  This fi nal presentation is shown in Fig. 5.1  c  . Once again the parameter   α   appears, 
but we have redefi ned it upside down,  β 5 1/1α, so that our display parameter  V  0 

is in the numerator and is linear. This is our free choice and simply improves the 
display. Figure 5.1  c     shows that initial   velocity     increases the falling displacement.  
   Note that, in all three options, the same parameter   α   appears but has a different mean-
ing: dimensionless gravity, initial displacement, and initial velocity. The graphs, which 
contain exactly the same information, change their appearance to refl ect these differences.  
   Whereas the original problem, Eq. (5.5), involved fi ve quantities, the dimensionless 
presentations involve only three, having the form  

 S¿ 5 fcn(t¿, α)    α 5
gS0

V2
0

 (5.15)

t * =
V0t

S0

S *
=

S S 0

10

8

6

4

2

0
0 1 2 3

(c)

S *
**

 =
S S 0

t *** = g S0t √

5

4

3

2

1
0 1 2 3

(a)

t ** =
gt
V0

S *
* 

=
gS V

02

8

6

4

2

0
0 1 2 3

(b)

1

0.5

0

1

0.5

V0

√gS0

= 2

g S0

V0
2

= 2

1

0.5
0.2

0

g S0

V0
2

= 2

0

/

Fig. 5.1 Three entirely equivalent 
dimensionless presentations of the 
falling-body problem, Eq. (5.5): the 
effect of (a) gravity, (b) initial 
displacement, and (c) initial 
velocity. All plots contain the same 
information.
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  The reduction 5     2     3     5     2 should equal the number of fundamental dimensions 
involved in the problem {  L  ,   T  }. This idea led to the pi theorem (Sec. 5.3).  

    Selection     of     Scaling     (Repeating)   
  Variables  

 The selection of scaling variables is left to the user, but there are some guidelines. In 
Eq. (5.2), it is now clear that the scaling variables were   ρ  ,   V  , and   L  , since they appear in 
both force coeffi cient and Reynolds number. We could then interpret data from Eq. (5.2) 
as the variation of dimensionless   force   versus dimensionless   viscosity,   since each appears 
in only one dimensionless group. Sim  i  larly, in Eq. (5.5) the scaling variables were selected 
from (  S  0  ,   V  0  ,   g  ), not (  S  ,   t  ), because we wished to plot   S   versus   t   in the fi nal result.  
   The following are some guidelines for selecting scaling variables:  

  1.   They must   not   form a dimensionless group among themselves, but adding one 
more variable   will   form a dimensionless quantity. For example, test powers of   ρ  ,  
 V  , and   L  :  

ρaV bLc 5 (ML23)a(L/T)b(L) c 5 M 0L 0T 0 only if a 5 0, b 5 0, c 5 0

   In this case, we can see why this is so: Only   ρ   contains the dimension {  M  }, 
and only   V   co  n  tains the dimension {  T  }, so no cancellation is possible. If, now, 
we add   μ   to the scaling group, we will obtain the Reynolds number. If we add  
 F   to the group, we form the force coeffi cient.  

  2.   Do not select output variables for your scaling parameters. In Eq. (5.1), certainly 
do not select   F  , which you wish to isolate for your plot. Nor was   μ   selected, 
for we wished to plot force versus viscosity.  

  3.   If convenient, select   popular,   not obscure, scaling variables because they will ap pear 
in all of your dimensionless groups. Select density, not surface tension. Select body 
length, not surface roughness. Select stream velocity, not speed of sound.  

  The examples that follow will make this clear. Problem assignments might give hints.  
   Suppose we wish to study drag force versus   velocity  . Then we would not use   V     as 
a scaling parameter in Eq. (5.1). We would use (  ρ  ,   μ  ,   L  ) instead, and the fi nal dimen-
sionless function would become  

 CF¿ 5
ρF

μ2 5 f(Re)    Re 5
ρVL

μ
 (5.16)

  In plotting these data, we would not be able to discern the effect of   ρ   or   μ  , since they 
appear in both dimensionless groups. The grouping   C    9F again would mean dimension-
less force, and Re is now interpreted as either dimensionless velocity or size.  3 The 
plot would be quite different compared to Eq. (5.2), although it contains exactly the 
same information. The development of parameters such as   C  9F   and Re from the initial 
variables is the subject of the pi theorem (Sec. 5.3).  

    Some     Peculiar     Engineering   
  Equations  

 The foundation of the dimensional analysis method rests on two assumptions: (1) The 
proposed physical relation is dimensionally homogeneous, and (2) all the relevant 
variables have been i  n  cluded in the proposed relation.  
   If a relevant variable is missing, dimensional analysis will fail, giving either alge-
braic diffi cu  l  ties or, worse, yielding a dimensionless formulation that does not resolve 

3We were lucky to achieve a size effect because in this case L, a scaling parameter, did not appear 
in the drag coeffi cient.
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the process. A typical case is Manning’s open-channel formula, discussed in Example 1.4 
and Chap. 10.  

 V 5
1.49

n
R2/3S1/2 (1)

  Since   V     is velocity,   R     is a radius, and   n     and   S     are dimensionless, the formula is not 
dimensionally homogeneous. This should be a warning that (1) the formula changes 
if the   units     of   V     and   R     change and (2) if valid, it represents a very special case. Equa-
tion (1) in Example 1.4 predates the dime  n  sional analysis technique and is valid only 
for water in rough channels at moderate velocities and large radii in BG units.  
   Such dimensionally inhomogeneous formulas abound in the hydraulics literature. 
Another example is the Hazen-Williams formula [24] for volume fl ow of water 
through a straight smooth pipe:  

 Q 5 61.9D2.63 adp

dx
b0.54

 (5.17)

  where   D     is diameter and   dp  /  dx     is the pressure gradient. Some of these formulas arise 
because numbers have been inserted for fl uid properties and other physical data into 
perfectly legitimate homogeneous formulas. We shall not give the units of Eq. (5.17) 
to avoid encouraging its use.  
   On the other hand, some formulas are “constructs” that cannot be made dimension-
ally h  o  mogeneous. The “variables” they relate cannot be analyzed by the dimensional 
analysis technique. Most of these formulas are raw empiricisms convenient to a small 
group of specialists. Here are three examples:  

 B 5
25,000

100 2 R
 (5.18)

 S 5
140

130 1 API
 (5.19)

 0.0147DE 2
3.74

DE
5 0.26tR 2

172

tR
 (5.20)

  Equation (5.18) relates the Brinell hardness   B     of a metal to its Rockwell hardness  
 R  . Equation (5.19) relates the specifi c gravity   S     of an oil to its density in degrees 
API. Equation (5.20) relates the vi  s  cosity of a liquid in   D  E  , or degrees Engler, to 
its viscosity   t  R   in Saybolt seconds. Such formulas have a certain usefulness when 
communicated between fellow specialists, but we cannot handle them here. Vari-
ables like Brinell hardness and Saybolt viscosity are not suited to an   MLT  Q dimen-
sional system.  

    5.3     The     Pi     Theorem   There are several methods of reducing a number of dimensional variables into a smaller 
number of dimensionless groups. The fi rst scheme given here was proposed in 1914 by 
Buckingham [1] and is now called the   Buckingham     Pi     Theorem  . The name   pi     comes from 
the mathematical notation   P  , meaning a product of variables. The dimensionless groups 
found from the theorem are power products denoted by   P  1  ,   P  2  ,   P  3  , etc. The method 
allows the pi groups to be found in sequential order without resorting to free exponents.  
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   The fi rst part of the pi theorem explains what reduction in variables to expect:  

  If a physical process satisfi es the PDH and involves   n     dimensional variables, it can be reduced 
to a relation between   k     dimensionless variables or   P  s. The reduction   j     5     n     2     k  
  equals the maximum number of variables that do not form a pi among themselves and is 
always less than or equal to the number of dimensions describing the variables.  

  Take the specifi c case of force on an immersed body: Eq. (5.1) contains fi ve variables  
 F  ,   L  ,   U  ,   ρ  , and   μ   described by three dimensions {  MLT  }. Thus   n     5     5 and   j     #     3. 
Therefore it is a good guess that we can reduce the problem to   k     pi groups, with   k     5   
  n     2     j     $     5     2     3     5     2. And this is exactly what we obtained: two dimensionless  variables  
 P  1     5     C  F   and   P  2     5     Re. On rare occasions it may take more pi groups than this mini-
mum (see Example 5.5).  
   The second part of the theorem shows how to fi nd the pi groups one at a time:  

  Find the reduction   j  , then select   j     scaling variables that do not form a pi among themselves.  4 

Each desired pi group will be a power product of these   j     variables plus one additional vari-
able, which is assigned any convenient nonzero exponent. Each pi group thus found is 
independent.  

  To be specifi c, suppose the process involves fi ve variables:  

υ1 5 f(υ2, υ3, υ4, υ5)

  Suppose there are three dimensions {  MLT  } and we search around and fi nd that indeed  
 j     5     3. Then   k     5     5     2     3     5     2 and we expect, from the theorem, two and only two pi 
groups. Pick out three convenient variables that do   not     form a pi, and suppose these 
turn out to be   υ  2  ,   υ  3  , and   υ  4  . Then the two pi groups are formed by power products 
of these three plus one additional variable, either  υ   1 or   υ  5  :  

ß1 5 (υ2)a(υ3)b(υ4)cυ1 5 M0L0T0   ß2 5 (υ2)a(υ3)b(υ4)cυ5 5 M0L0T0

  Here we have arbitrarily chosen   υ  1 and   υ  5  , the added variables, to have unit expo-
nents. Equating exponents of the various dimensions is guaranteed by the theorem to 
give unique values of   a  ,   b  , and   c     for each pi. And they are independent because only  
 P  1 contains   υ  1 and only   P  2 contains   υ  5  . It is a very neat system once you get used 
to the procedure. We shall illustrate it with several examples.  
   Typically, six steps are involved:  

  1.   List and count the   n     variables involved in the problem. If any important variables 
are missing, dimensional analysis will fail.  

  2.   List the dimensions of each variable according to {  MLT  Q  } or {  FLT  Q  }. A list 
is given in Table 5.1.  

  3.   Find   j  . Initially guess   j     equal to the number of different dimensions present, 
and look for   j     variables that do not form a pi product. If no luck, reduce   j     by 1 
and look again. With practice, you will fi nd   j     rapidly.  

  4.   Select   j     scaling parameters that do not form a pi product. Make sure they 
please you and have some generality if possible, because they will then appear 

4Make a clever choice here because all pi groups will contain these j variables in various groupings.
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in every one of your pi groups. Pick density or velocity or length. Do not pick 
surface tension, for example, or you will form six different independent Weber-
number parameters and thoroughly annoy your colleagues.  

  5.   Add one additional variable to your   j     repeating variables, and form a power 
product. Alg  e  braically fi nd the exponents that make the product dimensionless. 
Try to arrange for your output or   dependent     variables (force, pressure drop, 
torque, power) to appear in the numerator, and your plots will look better. Do 
this sequentially, adding one new variable each time, and you will fi nd all  
 n     2     j     5     k     desired pi products.  

  6.   Write the fi nal dimensionless function, and check the terms to make sure all pi 
groups are dimensionless.  

Dimensions

Quantity Symbol MLTQ FLTQ

Length L L L
Area A L2 L2

Volume 9 L3 L3

Velocity V LT 21 LT 21

Acceleration dV/dt LT 22 LT 22

Speed of sound a LT 21 LT 21

Volume fl ow Q L3T 21 L3T 21

Mass fl ow m
#

MT 21 FTL21

Pressure, stress p, σ, τ ML21T 22 FL22

Strain rate ε
#

T 21 T 21

Angle θ None None
Angular velocity ω, V T 21 T 21

Viscosity μ ML21T 21 FTL22

Kinematic viscosity ν L2T 21 L2T 21

Surface tension Y MT 22 FL21

Force F MLT 22 F
Moment, torque M ML2T 22 FL
Power P ML2T –3 FLT 21

Work, energy W, E ML2T 22 FL
Density ρ ML23 FT2L24

Temperature T Q Q
Specifi c heat cp, cυ L2T 22Q21 L2T 22Q21

Specifi c weight γ ML–2T 22 FL23

Thermal conductivity k MLT –3Q21 FT 21Q21

Thermal expansion coeffi cient β Q21 Q21

Table 5.1 Dimensions of Fluid-
Mechanics Properties

  EXAMPLE     5.2  

  Repeat the development of Eq. (5.2) from Eq. (5.1), using the pi theorem.  

  Solution  

Step 1     Write the function and count variables:  

F 5 f(L, U, ρ, μ)  there are five variables (n 5 5)
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  Step 2   List dimensions of each variable. From Table 5.1  

   F     L   U     ρ     μ  

  {  MLT   2  2  }   {  L  }   {  LT   2  1  }   {  ML  2  3  }   {  ML  2  1  T   2  1  }  

  Step 3     Find   j  . No variable contains the dimension   Q  , and so   j     is less than or equal to 3 (  MLT  ). We 
inspect the list and see that   L  ,   U  , and   ρ   cannot form a pi group because only   ρ   contains 
mass and only   U     contains time. Therefore   j     does equal 3, and   n     2     j     5     5     2     3     5     2     5     k  . 
The pi theorem guarantees for this problem that there will be exactly two independent 
 dimensionless groups.  

Step 4     Select repeating   j     variables. The group   L  ,   U  ,   ρ   we found in step 3 will do fi ne.  

Step 5     Combine   L  ,   U  ,   ρ   with one additional variable, in sequence, to fi nd the two pi products.  
   First add force to fi nd   P  1  . You may select   any     exponent on this additional term as you 
please, to place it in the numerator or denominator to any power. Since   F     is the output, or 
dependent, va  r  iable, we select it to appear to the fi rst power in the numerator:  

ß1 5 LaUbρcF 5 (L)a(LT 
21)b(ML23)c(MLT22) 5 M0L0T0

  Equate exponents:  

  Length:     a     1     b     2     3  c     1     1     5     0  

  Mass:     c     1     1     5     0  

  Time:     2  b             2  2     5     0  

  We can solve explicitly for  

a 5 22    b 5 22    c 5 21

Therefore ß1 5 L22U22ρ21F 5
F

ρU2L2 5 CF Ans.

  This is exactly the right pi group as in Eq. (5.2). By varying the exponent on   F  , we could 
have found other equivalent groups such as   UL  ρ  1/2  /  F  1/2  .  
   Finally, add viscosity to   L  ,   U  , and   ρ   to fi nd   P  2  . Select any power you like for viscosity. 
By hindsight and custom, we select the power   2  1 to place it in the denominator:  

ß2 5 LaUbρcμ21 5 La(LT 
21)b(ML23)c(ML21T 

21)21 5 M0L0T0

  Equate exponents:  

  Length:     a     1     b     2     3  c     1     1     5     0  

  Mass:     c     2     1     5     0  

  Time:     2  b            1     1     5     0  

  from which we fi nd  

a 5 b 5 c 5 1

Therefore ß2 5 L1U1ρ1μ21 5
ρUL

μ
5 Re Ans.
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Step 6   We know we are fi nished; this is the second and last pi group. The theorem guarantees that the 
functional relationship must be of the equivalent form  

 
F

ρU2L2 5 g aρUL

μ
b Ans.

  which is exactly Eq. (5.2).  

  EXAMPLE     5.3  

  The power input   P   to a centrifugal pump is a function of the volume fl ow   Q  , impeller 
diameter   D  , rotational rate   V  , and the density  ρ    and viscosity  μ    of the fl uid:  

 P 5 f(Q, D, V, ρ, μ)

  Rewrite this as a dimensionless relationship.   Hint:   Use   V  ,   ρ  , and   D   as repeating variables. 
We will revisit this problem in Chap. 11.  

  Solution  

Step 1     Count the variables. There are six (don’t forget the one on the left,   P  ).  

Step 2     List the dimensions of each variable from Table 5.1. Use the {  FLT  Q  } system:  

   P     Q     D     V     ρ     μ  

  {  FLT   2  1  }   {  L  3  T   2  1  }   {  L  }   {  T   2  1  }   {  FT  2  L  2  4  }   {  FTL  2  2  }  

  Step 3     Find   j  . Lucky us, we were told to use (  V  ,   ρ  ,   D  ) as repeating variables, so surely   j   5 3, the 
number of dimensions (  FLT  )? Check that these three do   not   form a pi group:  

VaρbDc 5 (T 
21)a(FT 

2L24)b(L)c 5 F0L0T0 only if     a 5 0, b 5 0, c 5 0

  Yes,   j   5 3. This was not as obvious as the scaling group (  L  ,   U  ,   ρ  ) in Example 5.2, but it 
is true. We now know, from the theorem, that adding one more variable will indeed form 
a pi group.  

  Step 4a     Combine (  V  ,   ρ  ,   D  ) with power   P   to fi nd the fi rst pi group:  

ß1 5 VaρbDcP 5 (T 
21)a(FT 

2L24)b(L)c(FLT 
21) 5 F0L0T0

  Equate exponents:  

  Force:     b             1 1   5 0  

  Length:     2  4  b     1   c     1 1   5 0  

  Time:     2  a   1 2  b            21   5 0  

  Solve algebraically to obtain   a   5   2  3,   b   5   2  1, and   c   5   2  5. This fi rst pi group, the output 
dime  n  sionless variable, is called the   power     coeffi cient   of a pump,   C  P  :  

ß1 5 V23ρ21D25P 5
P

ρV3D5 5 CP



5.3  The Pi Theorem 299

Step 4b     Combine (  V  ,   ρ  ,   D  ) with fl ow rate   Q   to fi nd the second pi group:  

ß2 5 VaρbDcQ 5 (T 
21)a(FT 

2L24)b(L)c(L3T 
21) 5 F0L0T0

  After equating exponents, we now fi nd   a   5   2  1,   b   5 0, and   c   5   2  3. This second pi group 
is called the   fl ow     coeffi cient   of a pump,   C  Q  :  

ß2 5 V21ρ0D23Q 5
Q

VD3 5 CQ

Step 4c     Combine (  V  ,   ρ  ,   D  ) with viscosity   μ   to fi nd the third and last pi group:  

ß3 5 VaρbDcμ 5 (T 
21)a(FT 

2L24)b(L)c(FTL22) 5 F0L0T0

  This time,   a   5   2  1,   b   5   2  1, and   c   5   2  2; or   P  3   5   μ  /(  ρ  V  D  2  ), a sort of Reynolds number.  

Step 5     The original relation between six variables is now reduced to three dimensionless groups:  

 
P

ρV3D5 5 f a Q

VD3 , 
μ

ρVD2b Ans.

  Comment:     These three are the classical coeffi cients used to correlate pump power in 
Chap. 11.  

  EXAMPLE     5.4  

  At low velocities (laminar fl ow), the volume fl ow   Q     through a small-bore tube is a function 
only of the tube radius   R  , the fl uid viscosity   μ  , and the pressure drop per unit tube length  
 dp  /  dx  . Using the pi theorem, fi nd an appropriate dimensionless relationship.  

  Solution  

  Write the given relation and count variables:  

Q 5 f aR, μ, 
dp

dx
b  four variables (n 5 4)

  Make a list of the dimensions of these variables from Table 5.1 using the {  MLT  } system:  

  Q      R   μ       dp  /  dx  

  {  L  3  T   2  1  }   {  L  }   {  ML  2  1  T   2  1  }   {  ML  2  2  T          2  2  }  

  There are three primary dimensions (  M  ,   L  ,   T   ), hence   j     #     3. By trial and error we determine 
that   R  ,   μ  , and   dp  /  dx     cannot be combined into a pi group. Then   j     5     3, and   n     2     j     5     4     2     3     5     1. 
There is only   one     pi group, which we fi nd by combining   Q     in a power product with the 
other three:  

 ß1 5 Raμb adp

dx
bc

Q1 5 (L)a(ML21T 
21)b(ML22T 

22)c(L3T 
21)

 5 M0L0T 0
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  Equate exponents:  

  Mass:     b         1       c       5     0  

  Length:     a     2     b     2     2  c     1     3     5     0  

  Time:     2  b     2     2  c     2     1     5     0  

  Solving simultaneously, we obtain   a     5     2  4,   b     5     1, and   c     5     2  1. Then  

ß1 5 R24μ1adp

dx
b21

Q

or ß1 5
Qμ

R4(dpydx)
5 const Ans.

Since there is only one pi group, it must equal a dimensionless constant. This is as far as 
dimensional analysis can take us. The laminar fl ow theory of Sec. 4.10 shows that the value 
of the constant is 2π

8 . This result is also useful in Chap. 6.

  EXAMPLE     5.5  

  Assume that the tip defl ection   δ   of a cantilever beam is a function of the tip load   P  , beam 
length   L  , area moment of inertia   I  , and material modulus of elasticity   E  ;     that is,   δ     5     f  (  P  ,  
 L  ,   I  ,   E  ). Rewrite this function in dimensionless form, and comment on its complexity and   
the peculiar value of   j  .  

  Solution  

  List the variables and their dimensions:  

  δ      P     L     I     E  

  {  L  }   {  MLT   2  2  }   {  L  }   {  L  4  }   {  ML  2  1  T   2  2  }  

  There are fi ve variables (  n     5     5) and three primary dimensions (  M  ,   L  ,   T   ), hence   j     #     3. But 
try as we may, we   cannot     fi nd any combination of three variables that does not form a pi 
group. This is b  e  cause {  M  } and {  T  } occur only in   P     and   E     and only in the same form, 
{  MT  2  2  }. Thus we have e  n  countered a special case of   j     5     2, which is less than the number 
of dimensions (  M  ,   L  ,   T  ). To gain more insight into this peculiarity, you should rework the 
problem, using the (  F  ,   L  ,   T  ) system of d  i  mensions. You will fi nd that only {  F  } and {  L  } 
occur in these variables, hence   j   5 2.  
 With j 5 2, we select L and E as two variables that cannot form a pi group and then 
add other variables to form the three desired pis:

ß1 5 LaEbI1 5 (L)a(ML21T 
22)b(L4) 5 M0L0T0

from which, after equating exponents, we fi nd that a 5 24, b 5 0, or P1 5 I/L4. Then

ß2 5 LaEbP1 5 (L)a(ML21T 
22)b(MLT22) 5 M0L0T0

from which we fi nd a 5 22, b 5 21, or P2 5 P/(EL2), and

ß3 5 LaEbδ1 5 (L)a(ML21T 
22)b(L) 5 M0L0T0



5.3  The Pi Theorem 301

from which a 5 21, b 5 0, or P3 5 δ/L. The proper dimensionless function is P3 5 
f(P2, P1), or

 
δ

L
5 f a P

EL2, 
I

L4b Ans. (1)

This is a complex three-variable function, but dimensional analysis alone can take us no 
further.
Comments: We can “improve” Eq. (1) by taking advantage of some physical reasoning, 
as Langhaar points out [4, p. 91]. For small elastic defl ections, δ is proportional to load P 
and inversely proportional to moment of inertia I. Since P and I occur separately in Eq. (1), 
this means that P3 must be proportional to P2 and inversely proportional to P1. Thus, for 
these conditions,

 
δ

L
5 (const) 

P

EL2 
L4

I

or  δ 5 (const) 
PL3

EI
 (2)

This could not be predicted by a pure dimensional analysis. Strength-of-materials theory 
predicts that the value of the constant is 1

3.

    An     Alternate     Step-by-Step     Method   
  by     Ipsen     (1960)  5  

 The pi theorem method, just explained and illustrated, is often called the   repeating   
  variable     method     of dimensional analysis. Select the repeating variables, add one more, 
and you get a pi group. The writer likes it. This method is straightforward and sys-
tematically reveals all the desired pi groups. However, there are drawbacks: (1) All 
pi groups contain the same repeating variables and might lack variety or effectiveness, 
and (2) one must (sometimes laboriously) check that the selected repeating variables 
do   not   form a pi group among themselves (see Prob. P5.21).  
   Ipsen [5] suggests an entirely different procedure, a step-by-step method that 
obtains all of the pi groups at once, without any counting or checking. One simply 
successively eliminates each dimension in the desired function by division or multi-
plication. Let us illustrate with the same cla  s  sical drag function proposed in Eq. (5.1). 
Underneath the variables, write out the dimensions of each quantity.  

F 5 fcn(L, V, ρ, μ) (5.1)5MLT 
226     5L6   5LT 

216   5ML236   5ML21T 
216

   There are three dimensions, {  MLT  }. Eliminate them successively by division or 
multiplication by a variable. Start with mass {  M  }. Pick a variable that contains mass 
and divide it into all the other variables with mass dimensions. We select   ρ  , divide, 
and rewrite the function (5.1):  

 
F
ρ

 5 fcn aL, V, ρ 
μ

ρ
b (5.1a)

 5L4T 
226  5L6  5LT 

216   5L2T 
216 

5This method may be omitted without loss of continuity.



302 Chapter 5 Dimensional Analysis and Similarity 

  We did not divide into   L   or   V  , which do not contain {  M  }. Equation (5.1  a  ) at fi rst looks 
strange, but it contains fi ve distinct variables and the same information as Eq. (5.1).  
   We see that   ρ   is no longer important  . Thus   discard   ρ  , and now there are only four 
variables. Next, eliminate time {  T  } by dividing the time-containing va  r  iables by suit-
able powers of, say,   V  . The result is  

 
F

ρV2 5 fcn aL, V, 
μ

ρV
b (5.1b)

 {L2} {L} {L} 

   Now we see that   V   is no longer relevant. Finally, eliminate {  L  } through division 
by, say, a  p  propriate powers of   L   itself:  

 
F

ρV2L2 5 fcn aL, 
μ

ρVL
b (5.1c)

 {1} {1}

   Now   L   by itself is no longer relevant, and so discard it also. The result is equivalent 
to Eq. (5.2):  

 
F

ρV2L2 5 fcn a μ

ρVL
b (5.2)

  In Ipsen’s step-by-step method, we fi nd the force coeffi cient is a function solely of 
the Reynolds number. We did no counting and did not fi nd   j  . We just successively 
eliminated each primary dimension by division with the appropriate variables.  
   Recall Example 5.5, where we discovered, awkwardly, that the number of repeating 
variables was   less   than the number of primary dimensions. Ipsen’s method avoids this 
preliminary check. Recall the beam-defl ection problem proposed in Example 5.5 and 
the various dimensions:  

δ 5 f(P, L, I, E)

 5L6 5MLT226  5L6  5L46  5ML21T226
  For the fi rst step, let us eliminate {  M  } by dividing by   E  . We only have to divide into   P  :  

 δ 5 f aP

E
,    L,    I,  Eb

 5L6 5L26 5L6 5L46
  We see that we may discard   E   as no longer relevant, and the dimension {  T  } has 
vanished along with {  M  }. We need only eliminate {  L  } by dividing by, say, powers 
of   L   itself:  

 
δ

L
5 fcn a P

EL2,  L,  
I

L4b
{1}   {1}   {1}

  Discard   L   itself as now irrelevant, and we obtain   Answer   (1) to Example 5.5:  

 
δ

L
5 fcn a P

EL2, 
I

L4b



5.3  The Pi Theorem 303

  Ipsen’s approach is again successful. The fact that {  M  } and {  T  } vanished in the same 
division is proof that there are only   two   repeating variables this time, not the three 
that would be inferred by the presence of {  M  }, {  L  }, and {  T  }.  

  EXAMPLE 5.6  

  The leading-edge aerodynamic moment   M  LE   on a supersonic airfoil is a function of its chord 
length   C  , angle of attack   α  , and several air parameters: approach velocity   V  ,     density   ρ  , speed 
of sound   a  , and specifi c heat ratio   k   (Fig. E5.6). There is a very weak effect of air  viscosity, 
which is neglected here.  

V

C

MLE

α

  E5.6  

  Use Ipsen’s method to rewrite this function in dimensionless form.   

  Solution  

  Write out the given function and list the variables’ dimensions {  MLT  } underneath:  

 MLE 5 fcn(C, α, V, ρ, a, k)

 5ML2/T26 {L} {1} 5L/T6 5M/L36 5L/T6 {1}

  Two of them,   α   and   k  , are already dimensionless. Leave them alone; they will be pi groups 
in the fi nal function. You can eliminate any dimension. We choose mass {  M  } and divide 
by   ρ  :  

MLE

ρ
5 fcn(C,   α,   V,   ρ,   a,   k)

 5L5/T26 {L} {1} 5L/T6 5L/T6 {1}

  Recall Ipsen’s rules: Only divide into variables containing mass, in this case only   M  LE  , 
and then discard the divisor,   ρ  . Now eliminate time {  T  } by dividing by appropriate powers 
of   a  :  

MLE

ρa2 5 fcn aC,  α,  
V

a
,  a,  kb5L36 {L} {1} {1} {1}
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  Finally, eliminate {  L  } on the left side by dividing by   C  3  :  

MLE

ρa2C3 5 fcn aC,  α,  
V

a
,  kb

 {1} {1} {1} {1}

  We end up with four pi groups and recognize   V/a   as the Mach number, Ma. In aerodynam-
ics, the dimensionless moment is often called the   moment     coeffi cient  ,   C  M  . Thus our fi nal 
result could be written in the compact form  

 CM 5 fcn(α, Ma, k) Ans.

  Comments:     Our analysis is fi ne, but experiment and theory and physical reasoning all 
indicate that   M  LE   varies more strongly with   V   than with   a  . Thus aerodynamicists commonly 
defi ne the moment coeffi cient as   C  M     5     M  LE  /(  ρ  V  2  C  3  ) or something similar. We will study 
the analysis of supersonic forces and moments in Chap. 9.  

  5.4     Nondimensionalization     of   
  the     Basic     Equations  

   We could use the pi theorem method of the previous section to analyze problem after 
problem after problem, fi nding the dimensionless parameters that govern in each case. 
Textbooks on dimensional analysis [for example, 5] do this. An alternative and very 
powerful technique is to attack the basic equations of fl ow from Chap. 4. Even though 
these equations cannot be solved in general, they will reveal basic dimensionless 
parameters, such as the Reynolds number, in their proper form and proper position, 
giving clues to when they are negligible. The boundary conditions must also be 
nondimensionalized.  
   Let us briefl y apply this technique to the incompressible fl ow continuity and 
momentum equations with constant viscosity:  

Continuity: § ? V 5 0 (5.21a)

Navier-Stokes: ρ 
dV
dt

5 ρg 2 =p 1 μ§ 2V (5.21b)

  Typical boundary conditions for these two equations are (Sect. 4.6)  

Fixed solid surface: V 5 0 

Inlet or outlet: Known V, p (5.22)

Free surface, z 5 η: w 5
dη

dt
    p 5 pa 2 Y(Rx

21 1 Ry
21) 

  We omit the energy equation (4.75) and assign its dimensionless form in the problems 
(Prob. P5.43).  
   Equations (5.21) and (5.22) contain the three basic dimensions   M  ,   L  , and   T  . All 
variables   p  ,   V  ,   x  ,   y  ,   z  , and   t     can be nondimensionalized by using density and two 
reference constants that might be characteristic of the particular fl uid fl ow:  

Reference velocity 5 U   Reference length 5 L

  For example,   U     may be the inlet or upstream velocity and   L     the diameter of a body 
immersed in the stream.  

rev
Highlight
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   Now defi ne all relevant dimensionless variables, denoting them by an asterisk:  

V* 5
V
U
     =* 5 L=

x* 5
x

L
  y* 5

y

L
  z* 5

z

L
  R* 5

R

L
 (5.23)

t* 5
tU

L
  p* 5

p 1 ρgz

ρU2

  All these are fairly obvious except for   p  *, where we have introduced the piezometric 
pressure, a  s  suming that   z     is up. This is a hindsight idea suggested by Bernoulli’s 
equation (3.54).  
   Since   ρ  ,   U  , and   L     are all constants, the derivatives in Eqs. (5.21) can all be handled 
in d  i  mensionless form with dimensional coeffi cients. For example,  

0u

0x
5

0(Uu*)

0(Lx*)
5

U

L
 
0u*

0x*
 

  Substitute the variables from Eqs. (5.23) into Eqs. (5.21) and (5.22) and divide through 
by the leading dimensional coeffi cient, in the same way as we handled Eq. (5.12). 
Here are the resulting dimensionless equations of motion:  

Continuity: =* ? V* 5 0  (5.24a)

Momentum: 
dV*

dt*
 52=*p* 1

μ

ρUL
§*2(V*)  (5.24b)

  The dimensionless boundary conditions are:  

Fixed solid surface: V* 5 0

Inlet or outlet: Known V*, p*

Free surface, z* 5 η*: w* 5
dη*

dt*
 

(5.25)
p* 5

pa

ρU2 1
gL

U2 z* 2
Y

ρU2L
 (Rx*

21 1 Ry*
21) 

  These equations reveal a total of four dimensionless parameters, one in the Navier-
Stokes equation and three in the free-surface-pressure boundary condition.  

  Dimensionless     Parameters     In the continuity equation there are no parameters. The Navier-Stokes equation con-
tains one, generally accepted as the most important parameter in fl uid mechanics:  

Reynolds number Re 5
ρUL

μ
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  It is named after Osborne Reynolds (1842    –1912), a British engineer who fi rst pro-
posed it in 1883 (Ref. 4 of Chap. 6). The Reynolds number is always important, with 
or without a free surface, and can be neglected only in fl ow regions away from high-
velocity gradients—for example, away from solid surfaces, jets, or wakes.  
   The no-slip and inlet-exit boundary conditions contain no parameters. The free-
surface-pressure condition contains three:  

Euler number (pressure coefficient) Eu 5
pa

ρU2

This is named after Leonhard Euler (1707–1783) and is rarely important unless the 
pressure drops low enough to cause vapor formation (cavitation) in a liquid. The Euler 
number is often written in terms of pressure differences: Eu 5 Dp/(ρU2). If Dp 
involves vapor pressure pυ, it is called the cavitation number Ca 5 (pa 2 pυ)/(ρU2). 
   Cavitation problems are surprisingly common in many water fl ows. 
   The second free-surface parameter is much more important:  

Froude number Fr 5
U2

gL

  It is named after William Froude (1810–1879), a British naval architect who, with his 
son Robert, developed the ship-model towing-tank concept and proposed similarity 
rules for free-surface fl ows (ship resistance, surface waves, open channels). The 
Froude number is the dominant effect in free-surface fl ows.  It can also be important 
in  stratifi ed     fl ows , where a strong density difference exists without a free surface.    
For example, see Ref. [42].  Chapter 10 investigates Froude number effects in detail.  
   The fi nal free-surface parameter is  

Weber number We 5
ρU2L

Y

  It is named after Moritz Weber (1871–1951) of the Polytechnic Institute of Berlin, 
who developed the laws of similitude in their modern form. It was Weber who named 
Re and Fr after Reynolds and Froude. The Weber number is important only if it is 
of order unity or less, which typically occurs when the surface curvature is comparable 
in size to the liquid depth, such as in droplets, capillary fl ows, ripple waves, and very 
small hydraulic models. If We is large, its effect may be neglected.  
   If there is no free surface, Fr, Eu, and We drop out entirely, except for the pos-
sibility of ca  v  itation of a liquid at very small Eu. Thus, in low-speed viscous fl ows 
with no free surface, the Reynolds number is the only important dimensionless 
parameter.  

    Compressibility     Parameters   In high-speed fl ow of a gas there are signifi cant changes in pressure, density, and 
temperature that must be related by an equation of state such as the perfect-gas law, 
Eq. (1.10). These thermod  y  namic changes introduce two additional dimensionless 
parameters mentioned briefl y in earlier chapters:  

Mach number Ma 5
U
a

    Specific-heat ratio k 5
cp

cυ
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  The Mach number is named after Ernst Mach (1838–1916), an Austrian physicist. 
The effect of   k     is only slight to moderate, but Ma exerts a strong effect on com-
pressible fl ow properties if it is greater than about 0.3. These effects are studied in 
Chap. 9.  

    Oscillating     Flows   If the fl ow pattern is oscillating, a seventh parameter enters through the inlet boundary 
condition. For example, suppose that the inlet stream is of the form  

u 5 U cos ωt

  Nondimensionalization of this relation results in  

u

U
5 u* 5 cos aωL

U
 t*b

  The argument of the cosine contains the new parameter  

Strouhal number St 5
ωL

U

  The dimensionless forces and moments, friction, and heat transfer, and so on of such 
an oscillating fl ow would be a function of both Reynolds and Strouhal numbers. This 
parameter is named after V. Strouhal, a German physicist who experimented in 1878 
with wires singing in the wind.  
   Some flows that you might guess to be perfectly steady actually have an 
oscillatory pattern that is dependent on the Reynolds number. An example is the 
periodic vortex shedding behind a blunt body immersed in a steady stream of 
velocity   U  . Figure 5.2  a     shows an array of alternating vortices shed from a  circular 
cylinder immersed in a steady crossflow. This regular, periodic she  d  ding is 
called a   Kármán     vortex     street,   after T. von Kármán, who explained it theoreti-
cally in 1912. The shedding occurs in the range 10  2     ,     Re     ,     10  7  , with an average 
 Strouhal number   ω  d  /(2  π  U  )     <     0.21. Figure 5.2  b     shows measured shedding 
frequencies.  
   Resonance can occur if a vortex shedding frequency is near a body’s structural 
vibration frequency. Electric transmission wires sing in the wind, undersea mooring 
lines gallop at certain current speeds, and slender structures fl utter at critical wind or 
vehicle speeds. A striking example is the disastrous failure of the Tacoma Narrows 
suspension bridge in 1940, when wind-excited vortex shedding caused resonance with 
the natural torsional oscillations of the bridge. The problem was magnifi ed by the 
bridge deck nonlinear stiffness, which occurred when the hangers went slack during 
the oscillation.  

    Other     Dimensionless     Parameters   We have discussed seven important parameters in fl uid mechanics, and there are oth-
ers. Four additional parameters arise from nondimensionalization of the energy equa-
tion (4.75) and its boundary conditions. These four (Prandtl number, Eckert number, 
Grashof number, and wall te  m  perature ratio) are listed in Table 5.2 just in case you 
fail to solve Prob. P5.43. Another important and perhaps surprising parameter is the 
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wall roughness ratio   ε  /  L     (in Table 5.2).  6 Slight changes in su  r  face roughness have a 
striking effect in the turbulent fl ow or high-Reynolds-number range, as we shall see 
in Chap. 6 and in Fig. 5.3.  
   This book is primarily concerned with Reynolds-, Mach-, and Froude-number 
effects, which dominate most fl ows. Note that we discovered these parameters (except  
ε   /  L  ) simply by nondimensionalizing the basic equations without actually solving them.  

6Roughness is easy to overlook because it is a slight geometric effect that does not appear in the 
equations of motion. It is a boundary condition that one might forget.
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ω π

ρ

Fig. 5.2 Vortex shedding from a 
circular cylinder: (a) vortex street 
behind a circular cylinder (Courtesy 
of U.S. Navy); (b) experimental 
shedding frequencies (data from 
Refs. 25 and 26).
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  Qualitative ratio
Parameter Defi nition of effects Importance

Reynolds number Re 5
ρUL

μ
 

Inertia

Viscosity
 Almost always

Mach number Ma 5
U

a
 

Flow speed

Sound speed
 Compressible fl ow

Froude number Fr 5
U2

gL
 

Inertia

Gravity
 Free-surface fl ow

Weber number We 5
ρU2L

Y
 

Inertia

Surface tension
 Free-surface fl ow

Rossby number Ro 5
U

V earth L
 

Flow velocity

Coriolis effect
 Geophysical fl ows

Cavitation number Ca 5
p 2 pυ

1
2ρU2

 
Pressure

Inertia
 Cavitation

(Euler number)

Prandtl number Pr 5
μcp

k
 

Dissipation

Conduction
 Heat convection

Eckert number Ec 5
U 2

cpT0
 

Kinetic energy

Enthalpy
 Dissipation

Specifi c-heat ratio k 5
cp

cυ

 
Enthalpy

Internal energy
 Compressible fl ow

Strouhal number St 5
ωL

U
 

Oscillation

Mean speed
 Oscillating fl ow

Roughness ratio 
ε

L
 

Wall roughness

Body length
 Turbulent, rough walls

Grashof number Gr 5
β¢TgL3ρ2

μ2
 

Buoyancy

Viscosity
 Natural convection

Rayleigh number Ra 5
β¢TgL3ρ2cp

μ k
 

Buoyancy

Viscosity
 Natural convection

Temperature ratio 
Tw

T0
 

Wall temperature

Stream temperature
 Heat transfer

Pressure coeffi cient Cp 5
p 2 p`

1
2ρU2

 
Static pressure

Dynamic pressure
 Aerodynamics, hydrodynamics

Lift coeffi cient CL 5
L

1
2ρU2A

 
Lift force

Dynamic force
 Aerodynamics, hydrodynamics

Drag coeffi cient CD 5
D

1
2ρU2A

 
Drag force

Dynamic force
 Aerodynamics, hydrodynamics

Friction factor f 5
hf

(V2/2g) (L/d)
 

Friction head loss

Velocity head
 Pipe fl ow

Skin friction coeffi cient cf 5
τwall

ρV 2/2
 

Wall shear stress

Dynamic pressure
 Boundary layer fl ow

Table 5.2 Dimensionless Groups 
in Fluid Mechanics
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   If the reader is not satiated with the 19 parameters given in Table 5.2, Ref. 29 con-
tains a list of over 1200 dimensionless parameters in use in engineering and science.  

    A     Successful     Application   Dimensional analysis is fun, but does it work? Yes, if all important variables are 
included in the proposed function, the dimensionless function found by dimensional 
analysis will collapse all the data onto a single curve or set of curves.  
   An example of the success of dimensional analysis is given in Fig. 5.3 for the 
measured drag on smooth cylinders and spheres. The fl ow is normal to the axis of 
the cylinder, which is extremely long,   L  /  d   S   ̀   . The data are from many sources, for 
both liquids and gases, and include bodies from several meters in diameter down to 
fi ne wires and balls less than 1 mm in size. Both curves in Fig. 5.3  a     are entirely 
experimental; the analysis of immersed body drag is one of the weakest areas of 
modern fl uid mechanics theory. Except for digital computer calculations, there is little 
theory for cylinder and sphere drag except   creeping     fl ow,     Re     ,     1.  

5
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length effect
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5
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2
1
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0.3
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d = ∞

   Ud
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ρ
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Transition to turbulent
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�
d

Fig. 5.3 The proof of practical 
dimensional analysis: drag 
coeffi cients of a cylinder and 
sphere: (a) drag coeffi cient of a 
smooth cylinder and sphere (data 
from many sources); (b) increased 
roughness causes earlier transition 
to a turbulent boundary layer.



5.4  Nondimensionalization of the Basic Equations 311

  The concept of a fl uid-caused  drag     force  on bodies is covered extensively in Chap. 7. 
Drag is the fl uid force parallel to the oncoming stream—see Fig. 7.10 for details. 
   The Reynolds number of both bodies is based on diameter, hence the notation Re  d  . 
But the drag coeffi cients are defi ned differently:  

 CD 5 μ drag
1
2 ρU 2Ld

cylinder

drag
1
2 ρU2 14πd 2 sphere

 (5.26)

They both have a factor 1
2 because the term 1

2ρU 2 occurs in Bernoulli’s equation, and 
both are based on the projected area—that is, the area one sees when looking toward 
the body from upstream. The usual defi nition of CD is thus

 CD 5
drag

1
2 ρU2(projected area)

 (5.27)

However, one should carefully check the defi nitions of CD, Re, and the like before 
using data in the literature. Airfoils, for example, use the planform area.
 Figure 5.3a is for long, smooth cylinders. If wall roughness and cylinder length 
are included as variables, we obtain from dimensional analysis a complex three-
parameter function:

 CD 5 f  aRed, 
ε

d
, 

L

d
b (5.28)

  To describe this function completely would require 1000 or more experiments or CFD 
results. Therefore it is customary to explore the length and roughness effects sepa-
rately to establish trends.  
   The table with Fig. 5.3  a     shows the length effect with zero wall roughness. As 
length d  e  creases, the drag decreases by up to 50 percent. Physically, the pressure is 
“relieved” at the ends as the fl ow is allowed to skirt around the tips instead of defl ect-
ing over and under the body.  
   Figure 5.3  b     shows the effect of wall roughness for an infi nitely long cylinder. The 
sharp drop in drag occurs at lower Re  d   as roughness causes an earlier transition to a 
turbulent boundary layer on the surface of the body. Roughness has the same effect 
on sphere drag, a fact that is exploited in sports by deliberate dimpling of golf balls 
to give them less drag at their fl ight Re  d     <     10  5  . See Fig. D5.2.  
   Figure 5.3 is a typical experimental study of a fl uid mechanics problem, aided by 
dimensional analysis. As time and money and demand allow, the complete three-
parameter relation (5.28) could be fi lled out by further experiments.  

  EXAMPLE     5.7  

  A smooth cylinder, 1 cm in diameter and 20 cm long, is tested in a wind tunnel for a 
crossfl ow of 45 m/s of air at 20  8  C and 1 atm. The measured drag is 2.2   6     0.1 N. (  a  ) Does 
this data point agree with the data in Fig. 5.3? (  b  ) Can this data point be used to predict the 
drag of a chimney 1 m in diameter and 20 m high in winds at 20  8  C and 1 atm? If so, what 
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is the recommended range of wind velocities and drag forces for this data point? (  c  ) Why 
are the answers to part (  b  ) always the same, regardless of the chimney height, as long as  
 L    5 20  d  ?  

  Solution  

(a) For air at 208C and 1 atm, take ρ 5 1.2 kg/m3 and μ 5 1.8 E25 kg/(m-s). Since the test 
cylinder is short, L /d 5 20, it should be compared with the tabulated value CD < 0.91 in the 
table to the right of Fig. 5.3a. First calculate the Reynolds number of the test cylinder:

Red 5
ρUd

μ
5

(1.2 kg/m3)(45 m/s)(0.01 m)

1.8E25 kg/(m 2 s)
5 30,000

Yes, this is in the range 104 , Re , 105 listed in the table. Now calculate the test drag 
coeffi cient:

CD,test 5
F

(1/2)ρU2Ld
5

2.2 N

(1/2)(1.2 kg/m3)(45 m/s)2(0.2 m)(0.01 m)
5 0.905

Yes, this is close, and certainly within the range of 65 percent stated by the test results. 
Ans. (a)

(b) Since the chimney has L/d 5 20, we can use the data if the Reynolds number range is 
correct:

 104 ,
(1.2 kg/m3)Uchimney(1 m)

1.8 E25 kg/(m ? s)
, 105  if  0.15 

m

s
, Uchimney , 1.5 

m

s
 

These are negligible winds, so the test data point is not very useful Ans. (b)
The drag forces in this range are also negligibly small:

 Fmin 5 CD 
ρ

2
 U2

min Ld 5 (0.91) a1.2 kg/m3

2
b (0.15 m/s)2(20 m)(1 m) 5 0.25 N

 Fmax 5 CD 
ρ

2
 U2

max Ld 5 (0.91) a1.2 kg/m3

2
b (1.5 m/s)2(20 m)(1 m) 5 25 N

(c) Try this yourself. Choose any 20:1 size for the chimney, even something silly like 20 
mm:1 mm. You will get the same results for U and F as in part (b) above. This is because 
the product Ud occurs in Red and, if L 5 20d, the same product occurs in the drag force. 
For example, for Re 5 104,

Ud 5 104μ

ρ
 then F 5 CD 

ρ

2
 U2Ld 5 CD 

ρ

2
 U2(20d )d 5 20CD 

ρ

2
 (Ud )2 5 20CD 

ρ

2
 a104μ

ρ
b2

The answer is always Fmin 5 0.25 N. This is an algebraic quirk that seldom occurs.

  EXAMPLE     5.8  

  Telephone wires are said to “sing” in the wind. Consider a wire of diameter 8 mm. At what 
sea-level wind velocity, if any, will the wire sing a middle C note?  
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  Solution  

For sea-level air take ν < 1.5 E25 m2/s. For nonmusical readers, middle C is 262 Hz. 
Measured shedding rates are plotted in Fig. 5.2b. Over a wide range, the Strouhal number 
is  approximately 0.2, which we can take as a fi rst guess. Note that (ω/2π) 5 f, the shedding 
frequency. Thus

St 5
fd

U
5

(262 s21) (0.008 m)

U
< 0.2

U < 10.5  
m

s

Now check the Reynolds number to see if we fall into the appropriate range:

Red 5
Ud

ν
5

(10.5 m/s)(0.008 m)

1.5 E25 m2/s
< 5600

In Fig. 5.2b, at Re 5 5600, maybe St is a little higher, at about 0.21. Thus a slightly 
improved estimate is

 Uwind 5 (262)(0.008)/(0.21) < 10.0 m/s Ans.

    5.5     Modeling     and     Similarity   So far we have learned about dimensional homogeneity and the pi theorem method, 
using power products, for converting a homogeneous physical relation to dimension-
less form. This is straigh  t  forward mathematically, but certain engineering diffi culties 
need to be discussed.  
   First, we have more or less taken for granted that the variables that affect the 
process can be listed and analyzed. Actually, selection of the important variables 
requires considerable judgment and experience. The engineer must decide, for exam-
ple, whether viscosity can be neglected. Are there signifi cant temperature effects? Is 
surface tension important? What about wall roughness? Each pi group that is retained 
increases the expense and effort required. Judgment in selecting variables will come 
through practice and maturity; this book should provide some of the necessary 
experience.  
   Once the variables are selected and the dimensional analysis is performed, the 
experimenter seeks to achieve   similarity     between the model tested and the prototype 
to be designed. With suffi     cient testing, the model data will reveal the desired dimen-
sionless function between variables:  

 ß1 5 f(ß2, ß3, p ßk) (5.29)

  With Eq. (5.29) available in chart, graphical, or analytical form, we are in a position 
to ensure co  m  plete similarity between model and prototype. A formal statement would 
be as follows:  

  Flow conditions for a model test are completely similar if all relevant dimensionless 
parameters have the same corresponding values for the model and the prototype.  

  This follows mathematically from Eq. (5.29). If   P  2  m     5     P  2  p  ,   P  3  m     5     P  3  p  , and so 
forth, Eq. (5.29) guarantees that the desired output   P  1  m   will equal   P  1  p  . But this is 
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easier said than done, as we now discuss. There are specialized texts on model test-
ing [30–32].  
   Instead of complete similarity, the engineering literature speaks of particular types 
of sim  i  larity, the most common being geometric, kinematic, dynamic, and thermal. 
Let us consider each separately.  

    Geometric     Similarity   Geometric similarity concerns the length dimension {  L  } and must be ensured before 
any sensible model testing can proceed. A formal defi nition is as follows:  

  A model and prototype are   geometrically     similar     if and only if all body dimensions 
in all three coo  r  dinates have the same linear scale ratio.  

  Note that   all     length scales must be the same. It is as if you took a photograph of the 
prototype and reduced it or enlarged it until it fi tted the size of the model. If the model 
is to be made one-tenth the prototype size, its length, width, and height must each be 
one-tenth as large. Not only that, but also its entire shape must be one-tenth as large, 
and technically we speak of   homologous     points, which are points that have the same 
relative location. For example, the nose of the prototype is homol  o  gous to the nose 
of the model. The left wingtip of the prototype is homologous to the left wingtip of 
the model. Then geometric similarity requires that all homologous points be related 
by the same linear scale ratio. This applies to the fl uid geometry as well as the model 
geometry.  

  All angles are preserved in geometric similarity. All fl ow directions are preserved. 
The orientations of model and prototype with respect to the surroundings must be 
identical.  

   Figure 5.4 illustrates a prototype wing and a one-tenth-scale model. The model 
lengths are all one-tenth as large, but its angle of attack with respect to the free stream 
is the same for both model and prototype: 10  8 not 1  8  . All physical details on the model 
must be scaled, and some are rather subtle and sometimes overlooked:  

  1.   The model nose radius must be one-tenth as large.  

  2.   The model surface roughness must be one-tenth as large.  

10°

Vp

(a)

a
Homologous

points

a

Vm

10°

40 m

8 m
0.8 m

4 m

(b)

   *1 m

   *0.1 m

Fig. 5.4 Geometric similarity in 
model testing: (a) prototype; 
(b) one-tenth-scale model.
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  3.   If the prototype has a 5-mm boundary layer trip wire 1.5 m from the leading 
edge, the model should have a 0.5-mm trip wire 0.15 m from its leading edge.  

  4.   If the prototype is constructed with protruding fasteners, the model should have 
homologous protruding fasteners one-tenth as large.  

  And so on. Any departure from these details is a violation of geometric similarity and 
must be just  i  fi ed by experimental comparison to show that the prototype behavior was 
not signifi cantly affected by the discrepancy.  
   Models that appear similar in shape but that clearly violate geometric similarity 
should not be compared except at your own risk. Figure 5.5 illustrates this point. The 
spheres in Fig. 5.5  a     are all geometrically similar and can be tested with a high expec-
tation of success if the Reynolds number, Froude number, or the like is matched. But 
the ellipsoids in Fig. 5.5  b     merely   look     similar. They a  c  tually have different linear 
scale ratios and therefore cannot be compared in a rational manner, even though they 
may have identical Reynolds and Froude numbers and so on. The data will not be 
the same for these ellipsoids, and any attempt to “compare” them is a matter of rough 
engineering judgment.  

    Kinematic     Similarity   Kinematic similarity requires that the model and prototype have the same length scale 
ratio and the same time scale ratio. The result is that the velocity scale ratio will be 
the same for both. As Langhaar [4] states it:  

  The motions of two systems are kinematically similar if homologous particles lie 
at homologous points at homologous times.  

  Length scale equivalence simply implies geometric similarity, but time scale equivalence 
may r  e  quire additional dynamic considerations such as equivalence of the Reynolds and 
Mach numbers.  
   One special case is incompressible frictionless fl ow with no free surface, as 
sketched in Fig. 5.6  a  . These perfect-fl uid fl ows are kinematically similar with inde-
pendent length and time scales, and no additional parameters are necessary (see Chap. 8 
for further details).  
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Fig. 5.5 Geometric similarity and 
dissimilarity of fl ows: (a) similar; 
(b) dissimilar.
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   Froude Scaling  Frictionless fl ows with a free surface, as in Fig. 5.6  b  , are kinematically similar if their 
Froude nu  m  bers are equal:  

 Frm 5
Vm

2

gLm
5

Vp
2

gLp
5 Frp (5.30)

  Note that the Froude number contains only length and time dimensions and hence is 
a purely kinematic parameter that fi xes the relation between length and time. From 
Eq. (5.30), if the length scale is  

 Lm 5 αLp (5.31)

where α is a dimensionless ratio, the velocity scale is

 
Vm

Vp
5 aLm

Lp
b1y2

5 1α (5.32)
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V1m = βV1p

V2 m = βV2  pModel

Dm =
α  Dp

Prototype
waves:

Vp
Period Tp

Cp

Hm =     Hp

λ m =     λp

Cm = C p √
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Fig. 5.6 Frictionless low-speed 
fl ows are kinematically similar: 
(a) Flows with no free surface are 
kinematically similar with 
independent length and time scale 
ratios; (b) free-surface fl ows are 
kinematically similar with length 
and time scales related by the 
Froude number.



5.5  Modeling and Similarity 317

  and the time scale is  

 
Tm

Tp
5

Lm yVm

Lp yVp
5 1α (5.33)

  These Froude-scaling kinematic relations are illustrated in Fig. 5.6  b     for wave motion 
modeling. If the waves are related by the length scale   α  , then the wave period, propa-
gation speed, and particle velocities are related by  1α. 
   If viscosity, surface tension, or compressibility is important, kinematic similarity 
depends on the achievement of dynamic similarity.  

    Dynamic     Similarity   Dynamic similarity exists when the model and the prototype have the same length 
scale ratio, time scale ratio, and force scale (or mass scale) ratio. Again geometric 
similarity is a fi rst requirement; without it, proceed no further. Then dynamic similar-
ity exists, simultaneous with kinematic similarity, if the model and prototype force 
and pressure coeffi cients are identical. This is ensured if  

  1.   For compressible fl ow, the model and prototype Reynolds number and Mach 
number and specifi c-heat ratio are correspondingly equal.  

  2.   For incompressible fl ow  

  a  .   With no free surface: model and prototype Reynolds numbers are equal.  

  b  .   With a free surface: model and prototype Reynolds number, Froude 
 number, and (if ne  c  essary) Weber number and cavitation number are 
 correspondingly equal.  

  Mathematically, Newton’s law for any fl uid particle requires that the sum of the pres-
sure force, gravity force, and friction force equal the acceleration term, or inertia force,  

Fp 1 Fg 1 Ff 5 Fi

  The dynamic similarity laws listed above ensure that each of these forces will be in 
the same ratio and have equivalent directions between model and prototype. Figure 5.7 

Ffm

Ffp

a

Fpp

Fgp

Fip

(a) (b)

Fpm
Fgm

Fim

a'

Fig. 5.7 Dynamic similarity in 
sluice gate fl ow. Model and 
prototype yield identical 
homologous force polygons if the 
Reynolds and Froude numbers are 
the same corresponding values: 
(a) prototype; (b) model.
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shows an example for fl ow through a sluice gate. The force polygons at homologous 
points have exactly the same shape if the Reynolds and Froude numbers are equal 
(neglecting surface tension and cavitation, of course). Kinematic similarity is also 
ensured by these model laws.  

    Discrepancies     in     Water     
and     Air     Testing  

 The perfect dynamic similarity shown in Fig. 5.7 is more of a dream than a reality 
because true equivalence of Reynolds and Froude numbers can be achieved only by 
dramatic changes in fl uid properties, whereas in fact most model testing is simply 
done with water or air, the cheapest fl uids available.  
   First consider hydraulic model testing with a free surface. Dynamic similarity 
requires equivalent Froude numbers, Eq. (5.30),   and     equivalent Reynolds numbers:  

 
VmLm

νm
5

VpLp

νp
 (5.34)

  But both velocity and length are constrained by the Froude number, Eqs. (5.31) and 
(5.32). Therefore, for a given length scale ratio   α  , Eq. (5.34) is true only if  

 
νm

νp
5

Lm

Lp
 
Vm

Vp
5 α1α 5 α3/2 (5.35)

   For example, for a one-tenth-scale model,   α     5     0.1 and   α  3/2     5     0.032. Since   ν  p   is 
undoubtedly water, we need a fl uid with only 0.032 times the kinematic viscosity of 
water to achieve dynamic similarity. Referring to Table 1.4, we see that this is impos-
sible: Even mercury has only one-ninth the kinematic viscosity of water, and a mercury 
hydraulic model would be expensive and bad for your health. In practice, water is used 
for both the model and the prototype, and the Reynolds number similarity (5.34) is 
unavoidably violated. The Froude number is held constant since it is the dominant param-
eter in free-surface fl ows. Typically the Reynolds number of the model fl ow is too small 
by a factor of 10 to 1000. As shown in Fig. 5.8, the low-Reynolds-number model data 
are used to est  i  mate by extrapolation the desired high  -  Reynolds-number prototype data. 
As the fi gure indicates, there is obviously considerable uncertainty in using such an 
extrapolation, but there is no other practical alternative in hydraulic model testing.  

log CD

Range
of Rem

Model
data:

Range
of Rep

Power-law
extrapolation

Uncertainty
in prototype
data estimate

log Re

105 106 107 108

Fig. 5.8 Reynolds-number 
extrapolation, or scaling, of 
hydraulic data with equal Froude 
numbers.
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   Second, consider aerodynamic model testing in air with no free surface. The impor-
tant p  a  rameters are the Reynolds number and the Mach number. Equation (5.34) 
should be satisfi ed, plus the compressibility criterion  

 
Vm

am
5

Vp

ap
 (5.36)

  Elimination of   V  m  /  V  p   between (5.34) and (5.36) gives  

 
νm

νp
5

Lm

Lp
 
am

ap
 (5.37)

  Since the prototype is no doubt an air operation, we need a wind-tunnel fl uid of low 
viscosity and high speed of sound. Hydrogen is the only practical example, but clearly 
it is too expensive and dangerous. Therefore, wind tunnels normally operate with air 
as the working fl uid. Cooling and pressurizing the air will bring Eq. (5.37) into better 
agreement but not enough to satisfy a length scale reduction of, say, one-tenth. There-
fore Reynolds number scaling is also commonly violated in aerodynamic testing, and 
an extrapolation like that in Fig. 5.8 is required here also.  
   There are specialized monographs devoted entirely to wind tunnel testing: low 
speed [38], high speed [39], and a detailed general discussion [40]. The following 
example illustrates modeling discrepancies in aeronautical testing.  

  EXAMPLE     5.9  

  A prototype airplane, with a chord length of 1.6 m, is to fl y at Ma   5 2 at 10 km standard 
altitude. A one-eighth scale model is to be tested in a helium wind tunnel at 100  8  C and 
1 atm. Find the helium test section velocity that will match (  a  ) the Mach number or (  b  ) the 
Reynolds number of the prot  o  type. In each case criticize the lack of dynamic similarity. 
(  c  ) What high pressure in the helium tunnel will match   both   the Mach and Reynolds numbers? 
(  d  ) Why does part (  c  )   still   not achieve dynamic similarity?  

  Solution  

  For helium, from Table A.4,   R   5 2077 m  2  /(s  2  -K),   k   5 1.66, and estimate   μ  He   < 2.32 
E  2  5 kg/(  m # s    ) from the power-law,   n   5 0.67, in the table. (  a  ) Calculate the helium speed of 
sound and velocity:  

aHe 5 1(kRT)He 5 2(1.66)(2077 m2/s2K) 3 (373 K) 5 1134 m/s

Maair 5 MaHe 5 2.0 5
VHe

aHe
5

VHe

1134 m/s

 VHe 5 2268 
m

s
 Ans. (a)

For dynamic similarity, the Reynolds numbers should also be equal. From Table A.6 at an 
altitude of 10,000 m, read ρair 5 0.4125 kg/m3, aair 5 299.5 m/s, and estimate μair < 1.48 
E25 kg/m # s from the power-law, n 5 0.7, in Table A.4. The air velocity is Vair 5
 (Ma)(aair) 5 2(299.5) 5 599 m/s. The model chord length is (1.6 m)/8 5 0.2 m. The helium 
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density is ρHe 5 (p/RT)He 5 (101,350 Pa)/[(2077 m2/s2 K)(373 K)] 5 0.131 kg/m3. Now 
calculate the two Reynolds numbers:

ReC,air 5
ρVC

μ
`
air

5
(0.4125 kg/m3)(599 m/s)(1.6 m)

1.48 E25 kg/(m # s)
5 26.6 E6

ReC,He 5
ρVC

μ
`
He

5
(0.131 kg/m3)(2268 m/s)(0.2 m)

2.32 E25 kg/(m # s)
5 2.56 E6

  The model Reynolds number is 10 times less than the prototype. This is typical when using 
small-scale models. The test results must be extrapolated for Reynolds number effects.  
  (  b  ) Now ignore Mach number and let the model Reynolds number match the prototype:  

ReHe 5 Reair 5 26.6 E6 5
(0.131 kg/m3)VHe(0.2 m)

2.32 E25 kg/(m # s)

 VHe 5 23,600 
m

s
 Ans. (b)

  This is ridiculous: a hypersonic Mach number of 21, suitable for escaping from the earth’s 
gravity. One should match the Mach numbers and correct for a lower Reynolds number.  
  (  c  ) Match both Reynolds and Mach numbers by increasing the helium density:  
  Ma matches if  

VHe 5 2268 
m

s
Then

ReHe 5 26.6 E6 5
ρHe(2268 m/s)(0.2 m)

2.32 E25 kg/(m # s)

Solve for

 ρHe 5 1.36 
kg

m3 pHe 5 ρRT 0He 5 (1.36)(2077)(373) 5 1.05 E6 Pa Ans. (c)

  A match is possible if we increase the tunnel pressure by a factor of ten, a daunting task.  
  (  d  ) Even with Ma and Re matched, we are   still   not dynamically similar because the two gases 
have different specifi c heat ratios:   k  He   5 1.66 and   k  air   5 1.40. This discrepancy will cause 
substantial differences in pressure, density, and temperature throughout supersonic fl ow.  

   Figure 5.9 shows a hydraulic model of the Bluestone Lake Dam in West Virginia. 
The model itself is located at the U.S. Army Waterways Experiment Station in 
 Vicksburg, MS. The horizontal scale is 1:65, which is suffi cient that the vertical scale 
can also be 1:65 without incurring signifi cant surface tension (Weber number) effects. 
Velocities are scaled by the Froude number. However, the prototype Reynolds number, 
which is of order 1 E7, cannot be matched here. The engineers set the Reynolds num-
ber at about 2 E4, high enough for a reasonable approximation of prototype turbulent 
fl ow viscous effects. Note the intense turbulence below the dam. The downstream bed, 
or   apron,   of a dam must be strengthened structurally to avoid bed erosion.  



5.5  Modeling and Similarity 321

   For hydraulic models of larger scale, such as harbors, estuaries, and embayments, 
geometric similarity may be violated of necessity. The vertical scale will be distorted 
to avoid Weber number effects. For example, the horizontal scale may be 1:1000, 
while the vertical scale is only 1:100. Thus the model channel may be   deeper   relative 
to its horizontal dimensions. Since deeper passages fl ow more effi ciently, the model 
channel bottom may be deliberately roughened to create the friction level expected in 
the prototype.  

  EXAMPLE     5.10  

  The pressure drop due to friction for fl ow in a long, smooth pipe is a function of average 
fl ow velocity, density, viscosity, and pipe length and diameter:   D  p     5     fcn(  V  ,   ρ  ,   μ  ,   L  ,   D  ). 
We wish to know how   D  p     varies with   V  . (  a  ) Use the pi theorem to rewrite this function in 

Fig. 5.9 Hydraulic model of the Bluestone Lake Dam on the New River near Hinton, West Virginia. The model scale is 1:65 both 
vertically and horizontally, and the Reynolds number, though far below the prototype value, is set high enough for the fl ow to be 
turbulent. (Courtesy of the U.S. Army Corps of Engineers Waterways Experiment Station.)
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dimensionless form. (  b  ) Then plot this function, using the following data for three pipes and 
three fl uids:  

  D  ,     cm     L  ,     m     Q  ,     m  3  /h     D  p  ,     Pa     ρ  ,     kg/m  3     μ  ,     kg/(m     ?     s)     V  ,     m/s*  

   1.0   5.0   0.3        4,680              680†    2.92 E-4†    1.06  
   1.0   7.0   0.6   22,300              680†    2.92 E-4†    2.12  
   1.0   9.0   1.0       70,800              680†    2.92 E-4†    3.54  
   2.0   4.0   1.0        2,080              998‡   0.0010‡   0.88  
   2.0   6.0   2.0   10,500              998‡   0.0010‡   1.77  
   2.0   8.0   3.1   30,400              998‡   0.0010‡   2.74  
   3.0   3.0   0.5              540   13,550§   1.56 E-3§   0.20  
   3.0   4.0   1.0        2,480   13,550§   1.56 E-3§   0.39  
   3.0   5.0   1.7        9,600   13,550§   1.56 E-3§   0.67  

 * V     5     Q / A ,  A     5     π  D  2 /4. 
  †Gasoline.  
  ‡Water.  
  §Mercury.  

  (  c  ) Suppose it is further known that   D  p     is proportional to   L     (which is quite true for long pipes 
with well-rounded entrances). Use this information to simplify and improve the pi theorem 
formulation. Plot the dimensionless data in this improved manner and comment on the results.  

  Solution  

  There are six variables with three primary dimensions involved {  MLT  }. Therefore, we expect 
that   j     5     6     2     3     5     3 pi groups. We are correct, for we can fi nd three variables that do not form a 
pi product (e.g.,   ρ  ,   V  ,   L  ). Carefully select three (   j  ) repeating variables, but not including   D  p     or  
 V  , which we plan to plot versus each other. We select (  ρ  ,   μ  ,   D  ), and the pi theorem guarantees 
that three independent power-product groups will occur:  

 ß1 5 ρaμbDc ¢p     ß2 5 ρdμeDfV     ß3 5 ρgμhDiL

or  ß1 5
ρD2¢p

μ2       ß2 5
ρVD

μ
      ß3 5

L

D

  We have omitted the algebra of fi nding (  a  ,   b  ,   c  ,   d  ,   e  ,   f  ,   g  ,   h  ,   i  ) by setting all exponents to 
zero   M  0  ,   L  0  ,   T  0  . Therefore, we wish to plot the dimensionless relation  

 
ρD2 ¢p

μ2 5 fcnaρVD

μ
, 

L

D
b Ans. (a)

  We plot   P  1 versus   P  2 with   P  3 as a parameter. There will be nine data points. For example, 
the fi rst row in the data here yields  

 
ρD2 ¢p

μ2 5
(680)(0.01)2(4680)

(2.92 E-4)2 5 3.73 E9

 
ρVD

μ
5

(680)(1.06)(0.01)

2.92 E-4
5 24,700    

L

D
5 500

   The nine data points are plotted as the open circles in Fig. 5.10. The values of   L  /  D     are 
listed for each point, and we see a signifi cant length effect. In fact, if we connect the only 
two points that have the same   L  /  D     (  5     200), we could see (and cross-plot to verify) that   D  p   
  increases linearly with   L  , as stated in the last part of the problem. Since   L     occurs only in  
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 P  3     5     L  /  D  , the function   P  1     5     fcn(  P  2  ,   P  3  ) must reduce to   P  1     5     (  L  /  D  ) fcn(  P  2  ), or simply 
a function involving only   two     parameters:  

 
ρD3 ¢p

Lμ2 5 fcnaρVD

μ
b    flow in a long pipe Ans. (c)

  We now modify each data point in Fig. 5.10 by dividing it by its   L  /  D     value. For example, 
for the fi rst row of data,   ρ  D  3     D  p  /(  L  μ  2  )     5     (3.73 E9)/500     5     7.46 E6. We replot these new 
data points as solid circles in Fig. 5.10. They correlate almost perfectly into a straight-line 
power-law function:  

 
ρD3 ¢p

Lμ2  < 0.155aρVD

μ
b1.75

 Ans. (c)

  All newtonian smooth pipe fl ows should correlate in this manner. This example is a varia-
tion of the fi rst completely successful dimensional analysis, pipe-fl ow friction, performed 
by Prandtl’s student Paul Blasius, who published a related plot in 1911. For this range of 
(turbulent fl ow) Reynolds numbers, the pressure drop increases approximately as   V  1.75  .  

  EXAMPLE     5.11  

  The smooth sphere data plotted in Fig. 5.3  a     represent dimensionless drag versus dimension-
less   viscosity  , since (  ρ  ,   V  ,   d  ) were selected as scaling or repeating variables. (  a  ) Replot these 
data to display the effect of dimensionless   velocity     on the drag. (  b  ) Use your new fi gure to 
predict the te  r  minal (zero-acceleration) velocity of a 1-cm-diameter steel ball (SG     5     7.86) 
falling through water at 20  8  C.  

  Solution  

  •     Assumptions:     Fig 5.3  a   is valid for any smooth sphere in that Reynolds number range.  
  •     Approach     (a):     Form pi groups from the function   F   5 fcn(  d  ,   V  ,   ρ  ,   μ  ) in such a way that  

 F   is plotted versus   V  . The answer was already given as Eq. (5.16), but let us review the 
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Fig. 5.10 Two different correlations 
of the data in Example 5.10: Open 
circles when plotting ρD2 Dp/μ2 
versus ReD, L/D is a parameter; once it 
is known that Dp is proportional to L, 
a replot (solid circles) of ρD3 Dp/(Lμ2) 
versus ReD collapses into a single 
power-law curve.
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steps. The proper scaling variables are (  ρ  ,   μ  ,   d   ), which do   not   form a pi. Therefore   j   5 3, 
and we expect   n   2   j   5 5   2 3   5 2 pi groups. Skipping the algebra, they arise as follows:  

 ß1 5 ρaμbd c F 5
ρF

μ2     ß2 5 ρaμbd c V 5
ρVd

μ
 Ans. (a)

 We may replot the data of Fig. 5.3a in this new form, noting that P1 ; (π/8)(CD)(Re)2. 
This replot is shown as Fig. 5.11. The drag increases rapidly with velocity up to transition, 
where there is a slight drop, after which it increases more than ever. If force is known, 
we may predict velocity from the fi gure, and vice versa.

• Property values for part (b):  ρwater 5 998 kg/m3    μwater 5 0.001 kg/(m-s)

ρsteel 5 7.86ρwater 5 7844 kg/m3.

• Solution to part (b): For terminal velocity, the drag force equals the net weight of the 
sphere in water:

F 5 Wnet 5 (ρs 2 ρw)g 
π

6
 d 3 5 (7840 2 998)(9.81) aπ

6
b (0.01)3 5 0.0351 N
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Fig. 5.11 Cross-plot of sphere drag 
data from Fig. 5.3a to show 
dimensionless force versus 
dimensionless velocity.
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 Therefore, the ordinate of Fig. 5.11 is known:

 Falling steel sphere: 
ρF

μ2 5
(998 kg/m3)(0.0351 N)30.001 kg/(m ? s) 4 2 < 3.5 E7

 From Fig. 5.11, at ρF/μ2 < 3.5 E7, a magnifying glass reveals that Red ≈ 2 E4. Then a 
crude estimate of the terminal fall velocity is

 
ρVd

μ
< 20,000    or    V <

20,000 30.001 kg/(m ? s) 4
(998 kg/m3)(0.01 m)

< 2.0 
m

s
 Ans. (b)

• Comments: Better accuracy could be obtained by expanding the scale of Fig. 5.11 in the 
region of the given force coeffi cient. However, there is considerable uncertainty in pub-
lished drag data for spheres, so the predicted fall velocity is probably uncertain by at least 
610 percent.

Note that we found the answer directly from Fig. 5.11. We could use Fig. 5.3a also 
but would have to iterate between the ordinate and abscissa to obtain the fi nal result, since 
 V     is contained in both plotted variables. 

  Summary  Chapters 3 and 4 presented integral and differential methods of mathematical analysis 
of fl uid fl ow. This chapter introduces the third and fi nal method: experimentation, as 
supplemented by the tec  h  nique of dimensional analysis. Tests and experiments are 
used both to strengthen existing theories and to provide useful engineering results 
when theory is inadequate.  
   The chapter begins with a discussion of some familiar physical relations and 
how they can be recast in dimensionless form because they satisfy the principle of 
dimensional homogeneity. A general technique, the pi theorem, is then presented 
for systematically fi nding a set of dimensio  n  less parameters by grouping a list of 
variables that govern any particular physical process. A second technique, Ipsen’s 
method, is also described. Alternately, direct application of dimensional analysis 
to the basic equations of fl uid mechanics yields the fundamental parameters gov-
erning fl ow pa  t  terns: Reynolds number, Froude number, Prandtl number, Mach 
number, and others.  
   It is shown that model testing in air and water often leads to scaling diffi culties 
for which compromises must be made. Many model tests do not achieve true dynamic 
similarity. The chapter ends by pointing out that classic dimensionless charts and data 
can be manipulated and recast to provide direct solutions to problems that would 
otherwise be quite cumbersome and laboriously iterative.  

  Problems  

  Most of the problems herein are fairly straightforward. More diffi -
cult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with a computer icon  may require the use of a 
computer. The standard end-of-chapter problems P5.1 to P5.91 

(categorized in the problem list here) are followed by word prob-
lems W5.1 to W5.10, fundamentals of engineering exam problems 
FE5.1 to FE5.12, comprehensive applied problems C5.1 to C5.5, 
and design projects D5.1 and D5.2.  
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  Problem     Distribution  

  Section   Topic   Problems  

   5.1   Introduction   P5.1–P5.9  
   5.2   The principle of dimensional homogeneity   P5.10–P5.13  
   5.3   The pi theorem; Ipsen’s method   P5.14–P5.42  
   5.4   Nondimensionalizing the basic equations   P5.43–P5.47  
   5.4   Data for spheres, cylinders, other bodies   P5.48–P5.59  
   5.5   Scaling of model data   P5.60–P5.74  
   5.5   Froude and Mach number scaling   P5.75–P5.84  
   5.5   Inventive rescaling of the data   P5.85–P5.91    

  Introduction;     dynamic     similarity  

  P5.1   For axial fl ow through a circular tube, the Reynolds num-
ber for transition to turbulence is approximately 2300 [see 
Eq. (6.2)], based on the diameter and average velocity. If  
 d     5     5 cm and the fl uid is kerosene at 20  8  C, fi nd the volume 
fl ow rate in m  3  /h that causes transition.  

  P5.2   A prototype automobile is designed for cold weather in 
Denver, CO (  2  10  8  C, 83 kPa). Its drag force is to 
be tested on a one-seventh-scale model in a wind tunnel 
at 150 mi/h, 20  8  C, and 1 atm. If the model and proto-
type are to satisfy dynamic similarity, what prototype 
 velocity, in mi/h, needs to be matched? Comment on 
your result.  

  P5.3   The transfer of energy by viscous dissipation is dependent 
upon viscosity   μ  , thermal co  n  ductivity   k  , stream velocity   U  , 
and stream temperature   T  0  . Group these quantities, if 
 possible, into the dimensionless   Brinkman     number,     which 
is proportional to   μ  .  

  P5.4   When tested in water at 20  8  C fl owing at 2 m/s, an 8  -  cm-
diameter sphere has a measured drag of 5 N. What will be 
the velocity and drag force on a 1.5-m-diameter weather 
balloon moored in sea-level standard air under dynami-
cally similar conditions?  

  P5.5   An automobile has a characteristic length and area of 8 
ft and 60 ft  2  , respectively. When tested in sea-level 
standard air, it has the following measured drag force 
versus speed:  

  V  , mi/h   20        40        60  

  Drag, lbf   31   115   249  

  The same car travels in Colorado at 65 mi/h at an altitude 
of 3500 m. Using dimensional analysis, estimate (  a  ) its 
drag force and (  b  ) the horsepower required to overcome 
air drag.  

  P5.6    The disk-gap-band parachute in the chapter-opener photo 
had a drag of 1600 lbf when tested at 15 mi/h in air at 20 8 C 
and 1 atm. ( a ) What was its drag coeffi cient? ( b ) If, as 

stated, the drag on Mars is 65,000 lbf and the velocity is 
375 mi/h in the thin Mars atmosphere,  ρ   <  0.020 kg/m 3 , 
what is the drag coeffi cient on Mars? (c) Can you explain 
the difference between ( a ) and ( b )? 

  P5.7   A body is dropped on the moon (  g     5     1.62 m/s  2  ) with an 
initial velocity of 12 m/s. By using option 2 variables, Eq. 
(5.11), the ground impact occurs at   t  **     5     0.34 and   S  **     5   
  0.84. Estimate (  a  ) the initial displacement, (  b  ) the fi nal dis-
placement, and (  c  ) the time of impact.  

  P5.8    The Archimedes number, Ar, used in the fl ow of stratifi ed 
fl uids, is a dimensionless combination of gravity  g , density 
difference  Δ  ρ , fl uid width  L , and viscosity   μ  . Find the 
form of this number if it is proportional to  g . 

P5.9 The Richardson number, Ri, which correlates the production 
of turbulence by buoyancy, is a dimensionless combination 
of the acceleration of gravity g, the fl uid temperature T0, 
the local temperature gradient 0T/0z, and the local  velocity 
gradient 0u/0z. Determine the form of the Richardson 
number if it is proportional to g.

  The     principle     of     dimensional     homogeneity  

  P5.10   Determine the dimension {  MLT  Q  } of the following 
quantities:  

(a) ρu 
0u

0x
  (b) #

2

1

 (p 2 p0) dA  (c) ρcp 
02T

0x 0y

(d) eee ρ 
0u

0t
 dx dy dz

    All quantities have their standard meanings; for example,  
 ρ   is density.  

  P5.11   During World War II, Sir Geoffrey Taylor, a British fl uid 
dynamicist, used dimensional analysis to estimate the wave 
speed of an atomic bomb explosion. He assumed that the 
blast wave radius   R   was a function of energy released   E  , air 
density   ρ  , and time   t  . Use dimensional reasoning to show 
how wave radius must vary with time.  

  P5.12   The   Stokes     number,   St, used in particle dynamics studies, 
is a dimensionless combination of   fi ve   variables: accelera-
tion of gravity   g  , viscosity   μ  , density   ρ  , particle velocity   U  , 
and particle d  i  ameter   D  . (  a  ) If St is proportional to   μ  
 and  inversely proportional to   g  , fi nd its form  .     (  b  ) Show 
that St is actually the quotient of two more traditional 
 dimensionless groups.  

  P5.13   The speed of propagation   C     of a capillary wave in deep 
water is known to be a function only of density   ρ  , wave-
length   λ  , and surface tension   Y  . Find the proper func-
tional relationship, completing it with a dimensionless 
constant. For a given density and wavelength, how does 
the propagation speed change if the surface tension is 
doubled?  
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  The     pi     theorem     or     Ipsen’s     method  

  P5.14    Flow in a pipe is often measured with an orifi ce plate, as in 
Fig. P5.14. The volume fl ow  Q    is a function of the pressure 
drop  Δ  p    across the plate, the fl uid density  ρ , the pipe diam-
eter  D , and the orifi ce diameter  d . Rewrite this functional 
relationship in dimensionless form. 

      P5.14  

  P5.15   The wall shear stress   τ  w   in a boundary layer is assumed to 
be a function of stream velocity   U  , boundary layer thick-
ness   δ  , local turbulence velocity   u  9  , density   ρ  , and local 
pressure gradient   dp/dx  . Using (  ρ  ,   U  ,   δ  ) as repeating vari-
ables, rewrite this relationship as a dimensionless function.  

  P5.16   Convection heat transfer data are often reported as a   heat   
  transfer     coeffi cient     h  , defi ned by  

 Q
#

5 hA ¢T

    where   Q
.
     5     heat fl ow, J/s  

  A     5     surface area, m  2  
  D  T     5     temperature difference, K  

    The dimensionless form of   h  , called the   Stanton     number,   is 
a combination of   h  , fl uid density   ρ  ,     specifi c heat   c  p  , and 
fl ow velocity   V  . Derive the Stanton number if it is propor-
tional to   h  . What are the units of   h  ?  

  P5.17   If you disturb a tank of length   L   and water depth   h  , the 
surface will oscillate back and forth at frequency   V  , 
 assumed here to depend also upon water density   ρ   and the 
acceleration of gravity   g  . (  a  ) Rewrite this as a dimension-
less function. (  b  ) If a tank of water sloshes at 2.0 Hz on 
earth, how fast would it oscillate on Mars (  g   < 3.7 m/s  2  )?  

  P5.18   Under laminar conditions, the volume fl ow   Q     through a 
small triangular-section pore of side length   b     and length   L   
  is a function of viscosity   μ  , pressure drop per unit length  
 D  p  /  L  , and   b  . Using the pi theorem, rewrite this relation in 
dimensionless form. How does the volume fl ow change if 
the pore size   b     is doubled?  

  P5.19   The period of oscillation   T     of a water surface wave is 
 assumed to be a function of density   ρ  , wavelength   l  , depth   h  , 

gravity   g  , and surface tension   Y  . Rewrite this relationship 
in dimensionless form. What results if   Y is negligible?  
 Hint:     Take   l  ,   ρ  , and   g     as repeating variables.  

  P5.20   A fi xed cylinder of diameter   D   and length   L  , immersed in a 
stream fl owing normal to its axis at velocity   U  , will experi-
ence zero average lift. However, if the cylinder is rotating 
at angular velocity   V  , a lift force   F   will arise. The fl uid 
density   ρ   is important, but viscosity is secondary and can 
be n  e  glected. Formulate this lift behavior as a dimension-
less function.  

  P5.21   In Example 5.1 we used the pi theorem to develop Eq. (5.2) 
from Eq. (5.1). Instead of merely listing the primary 
 dimensions of each variable, some workers list the   powers   
  of each primary d  i  mension for each variable in an array:  

 

 F L U ρ μ

M 1 0 0 1 1

L C 1 1 1 23 21S
T 22 0 21 0 21

    This array of exponents is called the   dimensional     matrix   
  for the given function. Show that the   rank     of this matrix 
(the size of the largest nonzero determinant) is equal to   j     5   
  n     2     k  , the desired reduction between original variables and 
the pi groups. This is a general property of dimensional 
matrices, as noted by Buckingham [1].  

  P5.22    As will be discussed in Chap. 11, the power  P  developed 
by a wind turbine is a function of diameter  D , air density ρ, 
wind speed  V , and rotation rate   ω  . Viscosity effects are 
negligible. Rewrite this relationship in dimensionless form. 

  P5.23   The period   T     of vibration of a beam is a function of its 
length   L  , area moment of inertia   I  , modulus of elasticity   E  , 
density   ρ  , and Poisson’s ratio   σ  . Rewrite this relation in 
dimensionless form. What further reduction can we make 
if   E     and   I     can occur only in the product form   EI  ?   Hint:   
  Take   L  ,   ρ  , and   E     as repeating variables.  

  P5.24   The lift force   F     on a missile is a function of its length   L  , 
velocity   V  , diameter   D  , angle of attack   α  , density   ρ  , viscos-
ity   μ  , and speed of sound   a     of the air. Write out the dimen-
sional matrix of this function and determine its rank. (See 
Prob. P5.21 for an explanation of this concept.) Rewrite the 
function in terms of pi groups.  

  P5.25     The thrust   F   of a propeller is generally thought to be a 
function of its diameter   D   and angular velocity   V  , the for-
ward speed   V  , and the density   ρ   and viscosity   μ   of the fl uid. 
Rewrite this rel  a  tionship as a dimensionless function.  

  P5.26   A pendulum has an oscillation period   T     which is assumed to 
depend on its length   L  , bob mass   m  , angle of swing   θ  , and 
the acceleration of gravity. A pendulum 1 m long, with a 
bob mass of 200 g, is tested on earth and found to have a 
period of 2.04 s when swinging at 20  8  . (  a  ) What is its period 
when it swings at 45  8  ? A similarly constructed pendulum, 
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with   L     5     30 cm and   m     5     100 g, is to swing on the moon (  g     5   
  1.62 m/s  2  ) at   θ     5     20  8  . (  b  ) What will be its period?  

  P5.27   In studying sand transport by ocean waves, A. Shields in 
1936 postulated that the threshold wave-induced bottom 
shear stress   τ   required to move particles depends on grav-
ity   g  , particle size   d   and density   ρ  p  , and water density   ρ   and 
viscosity   μ  . Find suitable dimensionless groups of this 
problem, which resulted in 1936 in the celebrated Shields 
sand transport diagram.  

  P5.28   A simply supported beam of diameter   D  , length   L  , and mod-
ulus of elasticity   E     is subjected to a fl uid crossfl ow of veloc-
ity   V  , density   ρ  , and viscosity   μ  . Its center defl ection   δ   is 
assumed to be a function of all these variables. (  a  ) Rewrite 
this proposed function in dimensionless form. (  b  ) Suppose it 
is known that   δ   is independent of   μ  , inversely proportional 
to   E  , and dependent only on   ρ  V  2  , not   ρ   and   V     separately. 
Simplify the dimensionless function accordingly.   Hint:   
  Take   L  ,   ρ  , and   V     as r  e  peating variables.  

  P5.29   When fluid in a pipe is accelerated linearly from rest, it 
begins as laminar flow and then u  n  dergoes transition to 
turbulence at a time   t  tr that depends on the pipe diame-
ter   D  , fluid acceleration   a  , density   ρ  , and viscosity   μ  . 
Arrange this into a dimensionless relation between   t  tr 
and   D  .  

  P5.30   When a large tank of high-pressure gas discharges through 
a nozzle, the exit mass fl ow   m

#
   is a function of tank pressure  

 p  0 and temperature   T  0  , gas constant   R  , specifi c heat   c  p  , and 
nozzle diameter   D  . Rewrite this as a dimensionless func-
tion. Check to see if you can use (  p  0  ,   T  0  ,   R  ,   D  ) as  repeating 
variables.  

  P5.31    The pressure drop per unit length in horizontal pipe fl ow, 
 D  p/L , depends on the fl uid density  ρ , viscosity  μ , diameter 
 D , and volume fl ow rate  Q . Rewrite this function in terms 
of pi groups. 

  P5.32   A   weir     is an obstruction in a channel fl ow that can be cali-
brated to measure the fl ow rate, as in Fig. P5.32. The vol-
ume fl ow   Q     varies with gravity   g  , weir width   b     into the 
paper, and upstream water height   H     above the weir crest. If 
it is known that   Q     is proportional to   b  , use the pi theorem to 
fi nd a unique functional relationship   Q  (  g  ,   b  ,   H  ).  

H

Q

Weir

      P5.32  

  P5.33   A spar buoy (see Prob. P2.113) has a period   T     of vertical 
(heave) oscillation that depends on the waterline cross-
sectional area   A  , buoy mass   m  , and fl uid specifi c weight   γ  . 
How does the period change due to doubling of (  a  ) the 
mass and (  b  ) the area? Instrument buoys should have long 
p  e  riods to avoid wave resonance. Sketch a possible long-
period buoy design.  

  P5.34   To good approximation, the thermal conductivity   k     of a gas 
(see Ref. 21 of Chap. 1) depends only on the density   ρ  , 
mean free path   l  , gas constant   R  , and absolute temperature  
 T  . For air at 20  8  C and 1 atm,   k     <     0.026 W/(m     ?     K) and   l     <   
  6.5 E-8 m. Use this information to determine   k     for hydro-
gen at 20  8  C and 1 atm if   l     <     1.2 E-7 m.  

  P5.35   The torque   M     required to turn the cone-plate viscometer in 
Fig. P5.35 depends on the radius   R  , rotation rate   V  , fl uid 
viscosity   μ  , and cone angle   θ  . Rewrite this relation in 
 dimensionless form. How does the relation simplify it if it 
is known that   M     is proportional to   θ  ?  

θ

Ω

θ

R

Fluid

    P5.35  

  P5.36   The rate of heat loss   Q
.
  loss through a window or wall is a 

function of the temperature diffe  r  ence between inside 
and outside   D  T  , the window surface area   A  , and the   R   
  value of the window, which has units of (ft  2     ?     h     ?     8  F)/ Btu. 
(  a  ) Using the Buckingham Pi Theorem, fi nd an  expression 
for rate of heat loss as a function of the other three 
 parameters in the problem. (  b  ) If the temperature 
 difference   D  T   doubles, by what factor does the rate of 
heat loss increase?  

  P5.37     The volume fl ow   Q   through an orifi ce plate is a function of 
pipe diameter   D  , pressure drop   D  p   across the orifi ce, fl uid 
density   ρ   and viscosity   μ  , and orifi ce diameter   d  . Using   D  ,  
 ρ  , and   D  p   as r  e  peating variables, express this relationship 
in dimensionless form.  

  P5.38   The size   d     of droplets produced by a liquid spray nozzle is 
thought to depend on the nozzle diameter   D  , jet velocity   U  , 
and the properties of the liquid   ρ  ,   μ  , and   Y  . Rewrite this 
relation in d  i  mensionless form.   Hint:     Take   D  ,   ρ  , and   U   as 
repeating variables.  
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  P5.39    The volume fl ow  Q  over a certain dam is a function of dam 
width  b , gravity  g , and the upstream water depth  H  above 
the dam crest. It is known that  Q  is proportional to  b . If  b     5   
 120 ft and  H     5    15 in., the fl ow rate is 600 ft 3 /s. What will 
be the fl ow rate if  H     5    3 ft? 

  P5.40     The time   t  d     to drain a liquid from a hole in the bottom of a 
tank is a function of the hole d  i  ameter   d  , the initial fl uid 
volume   y  0  , the initial liquid depth   h  0  , and the density   ρ   and 
viscosity   μ   of the fl uid. Rewrite this relation as a dimen-
sionless function, using Ipsen’s method.  

  P5.41   A certain axial fl ow turbine has an output torque   M     that is 
proportional to the volume fl ow rate   Q     and also depends on 
the density   ρ  , rotor diameter   D  , and rotation rate   V  . How 
does the torque change due to a doubling of (  a  )   D     and (  b  )   V  ?  

  P5.42     When disturbed, a fl oating buoy will bob up and down at 
frequency   f  . Assume that this fr  e  quency varies with buoy 
mass   m  , waterline diameter   d  , and the specifi c weight   γ   of 
the liquid. (  a  ) Express this as a dimensionless function. (  b  ) 
If   d   and   γ     are constant and the buoy mass is halved, how 
will the frequency change?  

  Nondimensionalizing     the     basic     equations  

  P5.43   Nondimensionalize the energy equation (4.75) and its 
boundary conditions (4.62), (4.63), and (4.70) by defi ning  
 T  *     5     T  /  T  0  , where   T  0 is the inlet temperature, assumed con-
stant. Use other d  i  mensionless variables as needed from 
Eqs. (5.23). Isolate all dimensionless parameters you fi nd, 
and relate them to the list given in Table 5.2.  

  P5.44   The differential energy equation for incompressible two-
dimensional fl ow through a “Da  r  cy-type” porous medium 
is approximately  

 ρcp
σ

μ
 
0p
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0T

0x
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    where   σ   is the   permeability     of the porous medium. All 
other symbols have their usual meanings. (  a  ) What are the 
appropriate dimensions for   σ  ? (  b  ) Nondimensionalize this 
equation, using (  L  ,   U  ,   ρ  ,   T  0  ) as scaling constants, and dis-
cuss any dimensionless parameters that arise.  

  P5.45   A model differential equation, for chemical reaction 
 dynamics in a plug reactor, is as follows:  

 u 
0C

0x
5 D

02C

0x2 2 kC 2
0C

0t

    where   u   is the velocity,   D   is a diffusion coeffi cient,   k   is a 
reaction rate,   x   is distance along the reactor, and   C   is the 
(dimensionless) concentration of a given chemical in the 
reactor. (  a  ) Determine the appropriate dimensions of   D   and   k  . 
(  b  ) Using a characteristic length scale   L   and average  velocity  
 V   as parameters, rewrite this equation in dimensionless form 
and comment on any pi groups a  p  pearing.  

  P5.46   If a vertical wall at temperature   T  w is surrounded by a fl uid 
at temperature   T  0  , a natural convection boundary layer fl ow 
will form. For laminar fl ow, the momentum equation is  

 ρ(u 

0u

0x
1 υ 

0u

0y
) 5 ρβ(T 2 T0)g 1 μ 

02u

0y2

    to be solved, along with continuity and energy, for (  u,     v,     T  ) 
with appropriate boundary cond  i  tions. The quantity   β   is 
the thermal expansion coeffi cient of the fl uid. Use   ρ  ,   g  ,   L  , 
and (  T  w  2  T  0  ) to nondimensionalize this equation. Note that 
there is no “stream” velocity in this type of fl ow.  

  P5.47   The differential equation for small-amplitude vibrations  
 y  (  x  ,   t  ) of a simple beam is given by  

 ρA 
02y

0t 2 1 EI
04y

0x4 5 0

    where   ρ     5     beam material density  
    A     5     cross-sectional area  
    I     5     area moment of inertia  

  E     5     Young’s modulus  

    Use only the quantities   ρ  ,   E  , and   A     to nondimensionalize   y  ,   x  , 
and   t  , and rewrite the diffe  r  ential equation in dimensionless 
form. Do any parameters remain? Could they be  removed 
by fu  r  ther manipulation of the variables?  

  Data     for     spheres,     cylinders,     other     bodies  

  P5.48   A smooth steel (SG     5     7.86) sphere is immersed in a stream 
of ethanol at 20  8  C moving at 1.5 m/s. Estimate its drag in 
N from Fig. 5.3  a  . What stream velocity would quadruple 
its drag? Take   D     5     2.5 cm.  

  P5.49   The sphere in Prob. P5.48 is dropped in gasoline at 20  8  C. 
Ignoring its acceleration phase, what will its terminal (con-
stant) fall velocity be, from Fig. 5.3  a  ?  

  P5.50   The parachute in the chapter-opener photo is, of course, 
meant to decelerate the payload on Mars. The wind tunnel 
test gave a drag coeffi cient of about 1.1, based upon the 
projected area of the parachute. Suppose it was falling on  
 earth   and, at an altitude of 1000 m, showed a steady descent 
rate of about 18 mi/h. Estimate the weight of the payload.  

  P5.51   A ship is towing a sonar array that approximates a sub-
merged cylinder 1 ft in diameter and 30 ft long with its 
axis normal to the direction of tow. If the tow speed is 
12     kn (1      kn     5     1.69     ft/s), estimate the horsepower  required 
to tow this cylinder. What will be the frequency of vortices 
shed from the cylinder? Use Figs. 5.2 and 5.3.  

  P5.52   When fl uid in a long pipe starts up from rest at a uniform 
acceleration   a  , the initial fl ow is laminar. The fl ow under-
goes transition to turbulence at a time   t  * which depends, to 
fi rst approxim  a  tion, only upon   a  ,   ρ  , and   μ  .     Experiments by 
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P. J. Lefebvre, on water at 20  8  C starting from rest with 1-g 
acceleration in a 3-cm-diameter pipe, showed transition at  
 t  *  =  1.02 s. Use this data to estimate (  a  ) the transition time 
and (  b  ) the transition Reynolds number Re  D   for water fl ow 
accelerating at 35 m/s  2 in a 5-cm-diameter pipe.  

  P5.53   Vortex shedding can be used to design a   vortex     fl owmeter   
  (Fig. 6.34). A blunt rod stretched across the pipe sheds 
vortices whose frequency is read by the sensor down-
stream. Suppose the pipe diameter is 5 cm and the rod is a 
cylinder of diameter 8 mm. If the sensor reads 5400 counts 
per minute, estimate the volume fl ow rate of water in m  3  /h. 
How might the meter react to other liquids?  

  P5.54   A fi shnet is made of 1-mm-diameter strings knotted into 
2     3     2 cm squares. Estimate the horsepower required to 
tow 300 ft  2 of this netting at 3 kn in seawater at 20  8  C. The 
net plane is normal to the fl ow direction.  

  P5.55   The radio antenna on a car begins to vibrate wildly at 8 Hz 
when the car is driven at 45 mi/h over a rutted road that 
approximates a sine wave of amplitude 2 cm and wave-
length   l   5 2.5 m. The antenna diameter is 4 mm. Is the 
vibration due to the road or to vortex shedding?  

  P5.56   Flow past a long cylinder of square cross-section results in 
more drag than the comparable round cylinder. Here are 
data taken in a water tunnel for a square cylinder of side 
length   b   5 2 cm:  

 V, m/s 1.0 2.0 3.0 4.0

Drag, N/(m of depth) 21 85 191 335

    (  a  ) Use these data to predict the drag force per unit depth of 
wind blowing at 6 m/s, in air at 20  8  C, over a tall square 
chimney of side length   b   5 55 cm. (  b  ) Is there any uncer-
tainty in your e  s  timate?  

  P5.57   The simply supported 1040 carbon-steel rod of Fig. P5.57 
is subjected to a crossfl ow stream of air at 20  8  C and 1 atm. 
For what stream velocity   U     will the rod center defl ection be 
approximately 1 cm?  

    P5.57    

U

D = 1 cm,  L = 60 cm

δ = 1 cm?

  P5.58   For the steel rod of Prob. P5.57, at what airstream velocity   U   
  will the rod begin to vibrate laterally in resonance in its fi rst 
mode (a half sine wave)?   Hint:     Consult a vibration text 
[34,35] under “lateral beam vibration.”  

  P5.59     A long, slender, smooth 3-cm-diameter fl agpole bends 
alarmingly in 20 mi/h sea-level winds, causing patriotic 
citizens to gasp. An engineer claims that the pole will bend 
less if its surface is deliberately roughened. Is she correct, 
at least qualitatively?  

  Scaling     of     model     data  

  *P5.60   The thrust   F   of a free propeller, either aircraft or marine, 
 depends upon density   ρ  , the rotation rate   n   in r/s, the diame-
ter   D  , and the forward velocity   V  . Viscous effects are slight 
and neglected here. Tests of a 25-cm-diameter model aircraft 
propeller, in a sea-level wind tunnel, yield the fo  l  lowing 
thrust data at a velocity of 20 m/s:  

Rotation rate, r/min 4800 6000 8000

Measured thrust, N 6.1 19 47

    (  a  ) Use this data to make a crude but effective dimension-
less plot. (  b  ) Use the dimensionless data to predict the 
thrust, in newtons, of a similar 1.6-m-diameter prototype 
propeller when rotating at 3800 r/min and fl ying at 225 mi/h 
at 4000-m standard altitude.  

  P5.61   If viscosity is neglected, typical pump fl ow results from Ex-
ample 5.3 are shown in Fig. P5.61 for a model pump tested in 
water. The pressure rise decreases and the power required in-
creases with the dimensionless fl ow coeffi cient. Curve-fi t ex-
pressions are given for the data. Suppose a similar pump of 
12-cm diameter is built to move gasoline at 20  8  C and a fl ow 
rate of 25 m  3  /h. If the pump rotation speed is 30 r/s, fi nd (  a  ) the 
pressure rise and (  b  ) the power required.  
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  P5.62    For the system of Prob. P5.22, assume that a small model 
wind turbine of diameter 90 cm, rotating at 1200 r/min, 
delivers 280 watts when subjected to a wind of 12 m/s. The 
data is to be used for a prototype of diameter 50 m and 
winds of 8 m/s. For dynamic similarity, estimate ( a ) the 
rotation rate, and ( b ) the power delivered by the prototype. 
Assume sea-level air density. 
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  P5.63    The Keystone Pipeline in the Chapter 6 opener photo has
 D     5    36 in. and an oil fl ow rate  Q     5    590,000 barrels per day 
(1 barrel    5    42 U.S. gallons). Its pressure drop per unit 
length,  D  p/L , depends on the fl uid density  ρ , viscosity  μ , 
diameter  D , and fl ow rate  Q . A water-fl ow model test, at 
20 8 C, uses a 5-cm-diameter pipe and yields  D  p/L   ̄   4000 
Pa/m. For dynamic similarity, estimate  D  p/L  of the pipeline. 
For the oil take  ρ     5    860 kg/m 3  and  μ     5    0.005 kg/m . s. 

  P5.64   The natural frequency   ω   of vibration of a mass   M     attached 
to a rod, as in Fig. P5.64, depends only on   M  

    P5.64   

ω

L Stiffness EI

M

  

      and the stiffness   EI     and length   L     of the rod. Tests with a 
2-kg mass attached to a 1040 carbon steel rod of diameter 
12 mm and length 40 cm reveal a natural frequency of 0.9 Hz. 
Use these data to predict the natural frequency of a 1-kg 
mass attached to a 2024 aluminum alloy rod of the same 
size.  

  P5.65    In turbulent fl ow near a fl at wall, the local velocity  u  
varies only with distance  y  from the wall, wall shear 
stress  τ  w , and fl uid properties  ρ  and  μ . The following 
data were taken in the University of Rhode Island wind 
tunnel for airfl ow,  ρ     5    0.0023 slug/ft 3 ,  μ     5    3.81 E-7 
slug/(ft    ?    s), and    τ  w     5    0.029 lbf/ft 2 : 

y, in 0.021 0.035 0.055 0.080 0.12 0.16

u, ft/s 50.6 54.2 57.6 59.7 63.5 65.9

      (  a  ) Plot these data in the form of dimensionless   u     versus 
dimensionless   y  , and suggest a suitable power-law curve 
fi t. (  b  ) Suppose that the tunnel speed is increased until   u     =   
  90 ft/s at   y     =     0.11 in. Estimate the new wall shear stress, in 
lbf/ft  2  .  

  P5.66   A torpedo 8 m below the surface in 20  8  C seawater cavitates 
at a speed of 21 m/s when a  t  mospheric pressure is 101 kPa. 
If Reynolds number and Froude number effects are negli-
gible, at what speed will it cavitate when running at a depth 
of 20 m? At what depth should it be to avoid cavitation at 
30 m/s?  

  P5.67   A student needs to measure the drag on a prototype of char-
acteristic dimension   d  p   moving at velocity   U  p   in air at stan-
dard atmospheric conditions. He constructs a model of 
characteristic d  i  mension   d  m  , such that the ratio   d  p  /  d  m   is 
some factor   f  . He then measures the drag on the model at 
dynamically similar conditions (also with air at standard 
atmospheric conditions). The student claims that the drag 
force on the prototype will be identical to that measured on 
the model. Is this claim correct? Explain.  

  P5.68   For the rotating-cylinder function of Prob. P5.20, if   L     >>     D  , 
the problem can be reduced to only two groups,   F  /(  ρ  U  2  LD  ) 
versus (  V  D/U  ). Here are experimental data for a cylinder 
30 cm in diameter and 2 m long, rotating in sea-level air, 
with   U   5 25 m/s.  

    V, rev/min 0 3000 6000 9000 12000 15000

F, N 0 850 2260 2900 3120 3300

    (  a  ) Reduce this data to the two dimensionless groups and 
make a plot. (  b  ) Use this plot to predict the lift of a cylinder 
with   D   5 5 cm,   L   5 80 cm, rotating at 3800 rev/min in 
water at   U   5 4 m/s.  

  P5.69   A simple fl ow measurement device for streams and chan-
nels is a notch, of angle   α  , cut into the side of a dam, as 
shown in Fig. P5.69. The volume fl ow   Q   depends only on  
 α  , the acceleration of gravity   g  , and the height   δ   of the 
 upstream water surface above the notch vertex. Tests of a 
model notch, of angle   α   5 55  8  , yield the following fl ow 
rate data:  

δ, cm 10 20 30 40

Q, m3/h 8 47 126 263

    (  a  )     Find a dimensionless correlation for the data. (  b  ) Use 
the model data to predict the fl ow rate of a prototype notch, 
also of angle   α   5 55  8  , when the upstream height   δ   is 3.2 m.  

  P5.69 

δα

  

  P5.70   A diamond-shaped body, of characteristic length 9 in, has 
the following measured drag forces when placed in a wind 
tunnel at sea-level standard conditions:  

  V, ft/s 30 38 48 56 61

F, 1bf 1.25 1.95 3.02 4.05 4.81

*
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      Use these data to predict the drag force of a similar 15  -  in 
diamond placed at similar orie  n  tation in 20  8  C water fl ow-
ing at 2.2 m/s.  

  P5.71   The pressure drop in a venturi meter (Fig. P3.128) varies only 
with the fl uid density, pipe approach velocity, and diameter 
ratio of the meter. A model venturi meter tested in water at 
20  8  C shows a 5-kPa drop when the approach velocity is 4 m/s. 
A geometrically similar prototype meter is used to measure 
gasoline at 20  8  C and a fl ow rate of 9 m  3  /min. If the prototype 
pressure gage is most accurate at 15 kPa, what should the 
upstream pipe diameter be?  

  P5.72   A one-twelfth-scale model of a large commercial aircraft is 
tested in a wind tunnel at 20  8  C and 1 atm. The model chord 
length is 27 cm, and its wing area is 0.63 m  2  . Test results 
for the drag of the model are as follows:  

    V, mi/h 50 75 100 125

Drag, N 15 32 53 80

    In the spirit of Fig. 5.8, use this data to estimate the drag of 
the full-scale aircraft when fl ying at 550 mi/h, for the same 
angle of attack, at 32,800 ft standard altitude.  

  P5.73   The power   P   generated by a certain windmill design depends 
on its diameter   D  , the air density   ρ  , the wind velocity   V  , the 
rotation rate   V  , and the number of blades   n  . (  a  ) Write this re-
l  a  tionship in dimensionless form. A model windmill, of diam-
eter 50 cm, develops 2.7 kW at sea level when   V   5 40 m/s and 
when rotating at 4800 r/min. (  b  ) What power will be devel-
oped by a geome  t  rically and dynamically similar prototype, of 
diameter 5 m, in winds of 12 m/s at 2000 m standard altitude? 
(  c  ) What is the appropriate rotation rate of the prototype?  

  P5.74   A one-tenth-scale model of a supersonic wing tested at 700 m/s 
in air at 20  8  C and 1 atm shows a pitching  moment of 0.25 
kN   ?     m. If Reynolds number effects are negligible, what will 
the pitching moment of the prototype wing be if it is fl ying at 
the same Mach number at 8-km standard altitude?  

  Froude     and     Mach     number     scaling  

  P5.75     According to the web site   USGS     Daily     Water     Data     for     the   
  Nation,   the mean fl ow rate in the New River near Hinton, 
WV, is 10,100 ft  3  /s. If the hydraulic model in Fig. 5.9 is to 
match this cond  i  tion with Froude number scaling, what is 
the proper model fl ow rate?  

 *   P5.76   A 2-ft-long model of a ship is tested in a freshwater tow 
tank. The measured drag may be split into “friction” drag 
(Reynolds scaling) and “wave” drag (Froude scaling). The 
model data are as follows:  

Tow speed, ft/s 0.8 1.6 2.4 3.2 4.0 4.8

Friction drag, lbf 0.016 0.057 0.122 0.208 0.315 0.441

Wave drag, lbf 0.002 0.021 0.083 0.253 0.509 0.697

    The prototype ship is 150 ft long. Estimate its total drag 
when cruising at 15 kn in seawater at 20  8  C.  

  P5.77    A dam 75 ft wide, with a nominal fl ow rate of 260 ft 3 , is to 
be studied with a scale model 3 ft wide, using Froude scal-
ing. ( a ) What is the expected fl ow rate for the model? 
( b ) What is the danger of only using Froude scaling for this 
test? ( c ) Derive a formula for a force on the model as com-
pared to a force on the prototype. 

  P5.78   A prototype spillway has a characteristic velocity of 3 m/s 
and a characteristic length of 10 m. A small model is con-
structed by using Froude scaling. What is the minimum 
scale ratio of the model that will ensure that its minimum 
Weber number is 100? Both fl ows use water at 20  8  C.  

  P5.79   An East Coast estuary has a tidal period of 12.42 h (the 
semidiurnal lunar tide) and tidal currents of approximately 
80 cm/s. If a one-fi ve-hundredth-scale model is constructed 
with tides driven by a pump and storage apparatus, what 
should the period of the model tides be and what model 
current speeds are expected?  

  P5.80   A prototype ship is 35 m long and designed to cruise at 
11 m/s (about 21 kn). Its drag is to be simulated by a 1  -  m-
long model pulled in a tow tank. For Froude scaling fi nd 
(  a  ) the tow speed, (  b  ) the ratio of prototype to model 
drag, and (  c  ) the ratio of prototype to model power.  

  P5.81   An airplane, of overall length 55 ft, is designed to fl y at 
680 m/s at 8000-m standard altitude. A one-thirtieth-scale 
model is to be tested in a pressurized helium wind tunnel at 
20  8  C. What is the appropriate tunnel pressure in atm? Even 
at this (high) pressure, exact dynamic similarity is not 
achieved. Why?  

  P5.82   A one-fi ftieth-scale model of a military airplane is tested at 
1020 m/s in a wind tunnel at sea-level conditions. The 
model wing area is 180 cm  2  . The angle of attack is 3  8  . If the 
measured model lift is 860 N, what is the prototype lift, 
using Mach number scaling, when it fl ies at 10,000 m stan-
dard altitude under dynamically similar conditions?   Note:  
 Be careful with the area scaling.  

  P5.83   A one-fortieth-scale model of a ship’s propeller is tested in a 
tow tank at 1200 r/min and e  x  hibits a power output of 1.4 
ft     ?     lbf/s. According to Froude scaling laws, what should the 
revolutions per minute and horsepower output of the proto-
type propeller be under dynamically similar cond  i  tions?  

  P5.84   A prototype ocean platform piling is expected to encounter 
currents of 150 cm/s and waves of 12-s period and 3-m 
height. If a one-fi fteenth-scale model is tested in a wave 
channel, what current speed, wave period, and wave height 
should be encountered by the model?  

  Inventive     rescaling     of     the     data  

 *  P5.85     As shown in Example 5.3, pump performance data can 
be  nondimensionalized. Problem P5.61 gave typical 
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 dimensionless data for centrifugal pump “head,”   H   5  
 D  p/  ρ  g  , as follows:  

     
gH

n2D2 < 6.0 2 120 a Q

nD3b2

    

    where   Q   is the volume fl ow rate,   n   the rotation rate in r/s, 
and   D   the impeller diameter. This type of correlation 
 allows one to compute   H   when (  ρ  ,     Q,     D  ) are known. (  a  ) 
Show how to rearrange these pi groups so that one can   size  
 the pump, that is, compute   D   directly when (  Q  ,     H  ,     n  ) are 
known. (  b  ) Make a crude but effective plot of your new 
function. (  c  ) Apply part (  b  ) to the following example: Find  
 D   when   H   5 37 m,   Q   5 0.14 m  3  /s, and   n   5 35 r/s. Find the 
pump diameter for this condition.  

  P5.86   Solve Prob. P5.49 for glycerin at 20  8  C, using the modifi ed 
sphere-drag plot of Fig. 5.11.  

  P5.87   In Prob. P5.61 it would be diffi cult to solve for   V because it 
appears in all three of the d  i  mensionless pump coeffi cients. 
Suppose that, in Prob. 5.61,   V is unknown but   D   5 12 cm 
and   Q   5 25 m  3  /h. The fl uid is gasoline at 20  8  C. Rescale the 
coeffi cients, using the data of Prob. P5.61, to make a plot of 
dimensionless power versus dimensionless rotation speed. 
Enter this plot to fi nd the maximum rotation speed   V for 
which the power will not exceed 300 W.  

  P5.88   Modify Prob. P5.61 as follows: Let   V     5     32 r/s and   Q     5     24 
m  3  /h for a geometrically similar pump. What is the maxi-
mum diameter if the power is not to exceed 340 W? Solve 
this problem by rescaling the data of Fig. P5.61 to make a 
plot of dimensionless power versus dimensionless d  i  ame-
ter. Enter this plot directly to fi nd the desired diameter.  

  P5.89   Wall friction   τ  w  , for turbulent fl ow at velocity   U   in a 
pipe of diameter   D  , was correlated, in 1911, with a 

 dimensionless correlation by Ludwig Prandtl’s student 
H. Blasius:  

   
τw

ρ U2 <
0.632

(ρUD/μ)1/4    

    Suppose that (  ρ  ,   U  ,   μ  ,   τ  w  ) were all known and it was de-
sired to fi nd the unknown velocity   U  . Rearrange and re-
write the formula so that   U   can be immediately calculated.  

  P5.90   Knowing that   D  p     is proportional to   L  , rescale the data of Ex-
ample 5.10 to plot dimensionless   D  p     versus dimensionless  
 viscosity  . Use this plot to fi nd the viscosity required in the fi rst 
row of data in Example 5.10 if the pressure drop is increased 
to 10 kPa for the same fl ow rate, length, and density.  

 *  P5.91     The traditional “Moody-type” pipe friction correlation in 
Chap. 6 is of the form  

   f 5
2¢pD

ρV2L
5 fcn aρVD

μ
, 
ε

D
b    

    where   D   is the pipe diameter,   L   the pipe length, and   ε   the 
wall roughness. Note that pipe average velocity   V   is used 
on both sides. This form is meant to fi nd   D  p   when   V   is 
known. (  a  ) Suppose that   D  p   is known, and we wish to fi nd  
 V  . Rearrange the above function so that   V   is isolated on the 
left-hand side. Use the following data, for   ε    /D   5 0.005, to 
make a plot of your new function, with your velocity 
 parameter as the ordinate of the plot.  

 f 0.0356 0.0316 0.0308 0.0305 0.0304

pVD/μ 15,000 75,000 250,000 900,000 3,330,000

    (  b  ) Use your plot to determine   V  , in m/s, for the following 
pipe fl ow:   D   5 5 cm,   ε     5 0.025 cm,   L   5 10 m, for water 
fl ow at 20  8  C and 1 atm. The pressure drop   D  p   is 110 kPa.  

  Word     Problems  

     W5.1   In 98 percent of data analysis cases, the “reducing fac-
tor”   j  , which lowers the number   n     of dimensional vari-
ables to   n     2     j     dimensionless groups, exactly equals the 
number of relevant dimensions (  M  ,   L  ,   T  ,   Q  ). In one case 
(Example 5.5) this was not so. Explain in words why 
this si  t  uation happens.  

     W5.2   Consider the following equation: 1 dollar bill     <     6 in. Is this 
relation dimensionally inconsistent? Does it satisfy the 
PDH? Why?  

     W5.3   In making a dimensional analysis, what rules do you follow 
for choosing your scaling variables?  

     W5.4   In an earlier edition, the writer asked the following ques-
tion about Fig. 5.1: “Which of the three graphs is a more 
effective presentation?” Why was this a dumb question?  

     W5.5   This chapter discusses the diffi culty of scaling Mach and 
Reynolds numbers together (an airplane) and Froude and 

Reynolds numbers together (a ship). Give an example of a 
fl ow that would combine Mach and Froude numbers. 
Would there be scaling problems for common fl uids?  

     W5.6   What is different about a very   small     model of a weir or dam 
(Fig. P5.32) that would make the test results diffi cult to 
relate to the prototype?  

     W5.7   What else are you studying this term? Give an example of 
a popular equation or formula from another course (ther-
modynamics, strength of materials, or the like) that does 
not satisfy the principle of dimensional homogeneity. 
 Explain what is wrong and whether it can be modifi ed to be 
homogeneous.  

     W5.8   Some colleges (such as Colorado State University) have 
environmental wind tunnels that can be used to study phe-
nomena like wind fl ow over city buildings. What details of 
scaling might be important in such studies?  
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     W5.9   If the model scale ratio is   α     5     L  m  /L  p  , as in Eq. (5.31), and 
the Weber number is i  m  portant, how must the model and 
 prototype surface tension be related to   α   for dynamic 
similarity?  

     W5.10   For a typical incompressible velocity potential analysis in 
Chap. 8 we solve   =  2  ϕ     5     0, subject to known values of  
 ≠  ϕ  /  ≠  n     on the boundaries. What dimensionless parameters 
govern this type of motion?  

  Fundamentals     of     Engineering     Exam     Problems  

    FE5.1   Given the parameters (  U  ,   L  ,   g  ,   ρ  ,   μ  ) that affect a certain 
liquid fl ow problem, the ratio   V  2  /(  Lg  ) is usually known 
as the  

    (  a  ) velocity head, (  b  ) Bernoulli head, (  c  ) Froude number, 
(  d  ) kinetic energy, (  e  ) impact energy  

     FE5.2   A ship 150 m long, designed to cruise at 18 kn, is to be 
tested in a tow tank with a model 3 m long. The appropriate 
tow velocity is  

    (  a  ) 0.19 m/s, (  b  ) 0.35 m/s, (  c  ) 1.31 m/s, (  d  ) 2.55 m/s, 
(  e  ) 8.35 m/s  

     FE5.3   A ship 150 m long, designed to cruise at 18 kn, is to be 
tested in a tow tank with a model 3 m long. If the model 
wave drag is 2.2 N, the estimated full-size ship wave drag is  

    (  a  ) 5500 N, (  b  ) 8700 N, (  c  ) 38,900 N, 
(  d  ) 61,800 N, (  e  ) 275,000 N  

     FE5.4   A tidal estuary is dominated by the semidiurnal lunar tide, 
with a period of 12.42 h. If a 1  :  500 model of the estuary is 
tested, what should be the model tidal period?  

    (  a  ) 4.0 s, (  b  ) 1.5 min, (  c  ) 17 min, (  d  ) 33 min, (  e  ) 64 min  
     FE5.5   A football, meant to be thrown at 60 mi/h in sea-level air 

(  ρ      5     1.22 kg/m  3  ,   μ     5     1.78 E-5 N     ?     s/m  2  ), is to be tested 
using a one-quarter scale model in a water tunnel (  ρ     5   
  998 kg/m  3  ,   μ     5     0.0010 N     ?     s/m  2  ). For dynamic similarity, 
what is the proper model water velocity?  

    (  a  ) 7.5 mi/h, (  b  ) 15.0 mi/h, (  c  ) 15.6 mi/h, 
(  d  ) 16.5 mi/h, (  e  ) 30 mi/h  

     FE5.6   A football, meant to be thrown at 60 mi/h in sea-level air 
(  ρ     5     1.22 kg/m  3  ,   μ     5     1.78 E-5 N     ?     m  2  ), is to be tested 
 using a one-quarter scale model in a water tunnel (  ρ     5   
  998 kg/m  3  ,   μ     5     0.0010 N     ?     s/m  2  ). For dynamic similarity, 
what is the ratio of prototype force to model force?  

    (  a  ) 3.86 : 1, (  b  ) 16 : 1, (  c  ) 32 : 1, (  d  ) 56 : 1, (  e  ) 64 : 1  

     FE5.7   Consider liquid fl ow of density   ρ  , viscosity   μ  , and velocity  
 U   over a very small model spillway of length scale   L  , 
such that the liquid surface tension coeffi cient   Y is impor-
tant. The quantity   ρ  U  2  L  /  Y in this case is important and is 
called the  

    (  a  ) capillary rise, (  b  ) Froude number, (  c  ) Prandtl number, 
(  d  ) Weber number, (  e  ) Bond number  

     FE5.8   If a stream fl owing at velocity   U     past a body of length  
 L     causes a force   F     on the body that depends only on   U  ,   L  , 
and fl uid viscosity   μ  , then   F     must be proportional to  

  (a) ρUL/μ, (b) ρU2L2, (c) μU/L, (d) μUL, (e) UL/μ
     FE5.9   In supersonic wind tunnel testing, if different gases are 

used, dynamic similarity r  e  quires that the model and proto-
type have the same Mach number and the same  

    (  a  ) Euler number, (  b  ) speed of sound, (  c  ) stagnation enthalpy, 
(  d   ) Froude number, (  e  ) sp  e  cifi c-heat ratio  

     FE5.10   The Reynolds number for a 1-ft-diameter sphere moving at 
2.3 mi/h through seawater (specifi c gravity 1.027, viscosity 
1.07 E-3 N     ?     s/m  2  ) is approximately  

      (  a  ) 300, (  b  ) 3000, (  c  ) 30,000, (  d  ) 300,000, (  e  ) 3,000,000  
     FE5.11   The Ekman number, important in physical oceanography, 

is a dimensionless combination of   μ  ,   L  ,   ρ  , and the earth’s 
rotation rate   V  . If the Ekman number is proportional to   V  , 
it should take the form  

    (  a  )  ρV2L2/μ, ( b  )  μVL/ρ, ( c  )  ρVL/μ, ( d  )  ρVL2/μ, 
( e  )  ρV/Lμ 

     FE5.12   A valid, but probably useless, dimensionless group is given 
by  (μT0g)/ (YLα) , where everything has its usual mean-
ing, except   α  . What are the dimensions of   α  ?  

    (  a  )  ®L21T21 , (  b  )  ®L21T22 , (  c  )  ®ML21 , (  d  )  ®21LT21 , 
(  e  )  ®LT21 

  Comprehensive     Problems  

  C5.1   Estimating pipe wall friction is one of the most common 
tasks in fl uids engineering. For long circular rough pipes in 
turbulent fl ow, wall shear   τ  w   is a function of density  
 ρ  ,   viscosity   μ  , average velocity   V  , pipe diameter   d  , and 
wall roughness height   e  . Thus, functionally, we can write  
 τ  w     5     fcn(  ρ  ,   μ  ,   V  ,   d  ,   e  ). (  a  ) Using dimensional analysis, 
rewrite this function in dimensionless form. (  b  ) A certain 

pipe has   d     5     5 cm and   ε     5     0.25 mm. For fl ow of water at 
20  8  C, measurements show the following values of wall 
shear stress:  

  Q  , gal/min   1.5   3.0   6.0   9.0   12.0   14.0  

  τ  w  , Pa   0.05   0.18   0.37   0.64   0.86   1.25  



Design Projects 335

  Plot these data using the dimensionless form obtained in 
part (  a  ) and suggest a curve-fi t formula. Does your plot 
reveal the entire functional relation obtained in part (  a  )?  

  C5.2   When the fl uid exiting a nozzle, as in Fig. P3.49, is a gas, 
instead of water, compressibility may be important, espe-
cially if upstream pressure   p  1 is large and exit diameter   d  2 
is small. In this case, the difference   p  1     2     p  2 is no longer 
controlling, and the gas mass fl ow   m

#
   reaches a maximum 

value that depends on   p  1 and   d  2 and also on the absolute 
upstream temperature   T  1 and the gas constant   R  . Thus, 
functionally,   ṁ      5     fcn(  p  1  ,   d  2  ,   T  1  ,     R  )  .     (  a  ) Using dimensional 
analysis, rewrite this function in dimensionless form. 
(  b  ) A certain pipe has   d  2     5     1 cm. For fl ow of air, measure-
ments show the following values of mass fl ow through the 
nozzle:  

  T  1  , K   300   300   300   500   800  

  p  1  , kPa   200   250   300   300   300  

  ṁ  , kg/s   0.037   0.046   0.055   0.043   0.034  

    Plot these data in the dimensionless form obtained in 
part (  a  ). Does your plot reveal the entire functional relation 
obtained in part (  a  )?  

  C5.3     Reconsider the fully developed draining vertical oil fi lm 
problem (see Fig. P4.80) as an e  x  ercise in dimensional 
analysis. Let the vertical velocity be a function only of 
 distance from the plate, fl uid properties, gravity, and fi lm 
thickness. That is,   w     5     fcn(  x  ,   ρ  ,   μ  ,   g  ,   δ   ). (  a  ) Use 
the  pi   theorem to rewrite this function in terms of 

 dimensionless parameters. (  b  ) Verify that the exact solution 
from Prob. P4.80 is consistent with your result in part (  a  ).  

  C5.4     The Taco Inc. model 4013 centrifugal pump has an impel-
ler of diameter   D     5     12.95 in. When pumping 20  8  C water at  
 V     5     1160 r/min, the measured fl ow rate   Q     and pressure 
rise   D  p   are given by the manufacturer as follows:  

  Q  , gal/min   200   300   400   500   600   700  

  D  p  , lb/in  2        36        35        34        32        29   23  

    (  a  ) Assuming that   D  p     5     fcn(  ρ  ,   Q  ,   D  ,   V  ), use the pi theorem 
to rewrite this function in terms of dimensionless parame-
ters and then plot the given data in dimensionless form. 
(  b  ) It is desired to use the same pump, running at 900 r/min, 
to pump 20  8  C gasoline at 400 gal/min. According to your 
dimensionless correlation, what pressure rise   D  p   is 
 expected, in lbf/in  2  ?  

  C5.5   Does an automobile radio antenna vibrate in resonance due 
to vortex shedding? Consider an antenna of length   L   and 
diameter   D  . According to beam vibration theory [see [34] 
or [35, p. 401]], the fi rst mode natural frequency of a solid 
circular cantilever beam is   ω  n   5 3.516[  EI  /(  ρ  AL  4  )]  1/2  , 
where   E   is the modulus of elasticity,   I   is the area moment 
of inertia,   ρ   is the beam material density, and   A   is the beam 
cross-section area. (  a  ) Show that   ω  n   is proportional to the 
antenna radius   R  . (  b  ) If the antenna is steel, with   L   5 60 cm 
and   D   5 4 mm, estimate the natural vibration frequency, in 
Hz. (  c  ) Compare with the shedding frequency if the car 
moves at 65 mi/h.  

 Design Projects 

  D5.1     We are given laboratory data, taken by Prof. Robert Kirchhoff 
and his students at the Un  i  versity of Massachusetts, for the 
spin rate of a 2-cup anemometer. The anemometer was 
made of ping-pong balls (  d     5     1.5 in) split in half, facing in 
opposite directions, and glued to thin ( 14 -in) rods pegged to 
a center axle. (See Fig. P7.91 for a sketch.) There were four 
rods, of lengths   l     5     0.212, 0.322, 0.458, and 0.574 ft. The 
experimental data, for wind tunnel velocity   U     and rotation 
rate   V  , are as follows:  

   l     5     0.212     l     5     0.322     l     5     0.458     l     5     0.574  

  U  ,     ft/s     V  ,     r/min     U  ,     ft/s     V  ,     r/min     U  ,     ft/s     V  ,     r/min     U  ,     ft/s     V  ,     r/min  

  18.95   435   18.95   225   20.10   140   23.21   115  
  22.20   545   23.19   290   26.77   215   27.60   145  
  25.90   650   29.15   370   31.37   260   32.07   175  
  29.94   760   32.79   425   36.05   295   36.05   195  
  38.45   970   38.45   495   39.03   327   39.60   215  

    Assume that the angular velocity     V of the device is a 
function of wind speed   U  , air density   ρ   and viscosity   μ  , rod 
length   l  , and cup diameter   d  . For all data, assume air is at 
1  atm and 20  8  C. Defi ne appropriate pi groups for this 
 problem, and plot the data in this dimensionless manner. 
Comment on the possible uncertainty of the results.  

  As a design application, suppose we are to use this 
 anemometer geometry for a large-scale (  d     5     30 cm) airport 
wind anemometer. If wind speeds vary up to 25 m/s and we 
desire an average rotation rate   V     5     120 r/min, what should 
be the proper rod length? What are possible limitations of 
your design? Predict the expected   V (in r/min) of your 
 design as affected by wind speeds from 0 to 25 m/s.  

  D5.2     By analogy with the cylinder drag data in Fig. 5.3  b  , spheres 
also show a strong roughness effect on drag, at least in the 
Reynolds number range 4 E4     ,     Re  D     ,     3 E5, which 
 accounts for the dimpling of golf balls to increase their 
distance traveled. Some experimental data for roughened 
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spheres [33] are given in Fig. D5.2. The fi gure also shows 
typical golf ball data. We see that some roughened spheres 
are better than golf balls in some regions. For the present 
study, let us neglect the ball’s   spin,     which causes the very 
important side-force or   Magnus     effect     (see Fig. 8.15) and 
assume that the ball is hit without spin and follows the 
equations of motion for plane motion (  x  ,   z  ):  

  m
#
x
#

5 2F cos θ   m
#
z
#

5 2F sin θ 2 W  

   where    F 5 CD

ρ

2
 
π

4
D2(x

#2 1 z
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#  

  The ball has a particular   C  D  (Re  D  ) curve from Fig. D5.2 and is 
struck with an initial velocity   V  0 and angle   θ  0  . Take the ball’s 
average mass to be 46 g and its diameter to be 4.3 cm. 
 Assuming sea-level air and a modest but fi nite range of 
initial conditions, integrate the equations of motion to com-
pare the trajectory of “roughened spheres” to actual golf 
ball calculations. Can the rough sphere outdrive a normal 

golf ball for any conditions? What roughness-effect differ-
ences occur between a low-impact duffer and, say, Tiger 
Woods?  

Smooth sphere

Rough spheres

Golf ball

900 ×10-5

1250 ×10-5

500 ×10-5

 = 150 × 10-5∈
D

0.6

0.5

0.4

0.3

0.2

0.1

0

2 ×104 105 106 4 ×106

Reynolds number, UD/ν
D

ra
g 

co
ef

fic
ie

nt
, C

D

D5.2

  References  

   1.   E. Buckingham, “On Physically Similar Systems: Illustra-
tions of the Use of Dime  n  sional Equations,”   Phys.     Rev.,   
  vol. 4, no. 4, 1914, pp. 345–376.  

   2.   J. D. Anderson,   Computational     Fluid     Dynamics:     The     Basics   
  with     Applications,   McGraw-Hill, New York, 1995.  

   3.   P. W. Bridgman,   Dimensional     Analysis,     Yale University 
Press, New Haven, CT, 1922, rev. ed., 1963.  

   4.   H. L. Langhaar,   Dimensional     Analysis     and     the     Theory     of   
  Models,     Wiley, New York, 1951.  

   5.   E. C. Ipsen,   Units,     Dimensions,     and     Dimensionless     Numbers,   
  McGraw-Hill, New York, 1960.  

   6.   H. G. Hornung,   Dimensional     Analysis:     Examples     of     the     Use   
  of     Symmetry,   Dover, New York, 2006.  

   7.   E. S. Taylor,   Dimensional     Analysis     for     Engineers,     Clarendon 
Press, Oxford, England, 1974.  

   8.   G. I. Barenblatt,   Dimensional     Analysis,     Gordon and Breach, 
New York, 1987.  

   9.   A. C. Palmer,   Dimensional     Analysis     and     Intelligent     Experi-
mentation,   World Scientifi c Publishing, Hackensack, NJ, 2008.  

   10.    T. Szirtes,  Applied     Dimensional     Analysis     and     Modeling , 2d 
ed., Butterworth-Heinemann, Burlington, MA, 2006. 

   11.   R. Esnault-Pelterie,   Dimensional     Analysis     and     Metrology,   
  F. Rouge, Lausanne, Switzerland, 1950.  

   12.   R. Kurth,   Dimensional     Analysis     and     Group     Theory     in     Astro-
physics,     Pergamon, New York, 1972.  

   13.    R. Kimball and M. Ross,  The     Data     Warehouse     Toolkit:     The   
  Complete     Guide     to     Dimensional     Modeling , 2d ed., Wiley, 
New York, 2002. 

   14.   R. Nakon,   Chemical     Problem     Solving     Using     Dimensional   
  Analysis,   Prentice-Hall, Upper Saddle River, NJ, 1990.  

   15.   D. R. Maidment (ed.),   Hydrologic     and     Hydraulic     Modeling   
  Support:     With     Geographic     Information     Systems,   Environ-
mental Systems Research Institute, Redlands, CA, 2000.  

   16.    A. M. Curren,  Dimensional     Analysis     for     Meds , 4th ed., 
 Delmar Cengage Learning, Independence, KY, 2009. 

   17.   G. P. Craig,   Clinical     Calculations     Made     Easy:     Solving   
   Problems     Using     Dimensional     Analysis,   4th ed., Lippincott 
Williams and Wilkins, Baltimore, MD, 2008.  

   18.   M. Zlokarnik,   Dimensional     Analysis     and     Scale-Up     in   
   Chemical     Engineering,     Sprin  g  er-Verlag, New York, 1991.  

   19.   W. G. Jacoby,   Data     Theory     and     Dimensional     Analysis,     Sage, 
Newbury Park, CA, 1991.  

   20.   B. Schepartz,   Dimensional     Analysis     in     the     Biomedical   
   Sciences,     Thomas, Springfi eld, IL, 1980.  

   21.    T. Horntvedt,  Calculating     Dosages     Safely:     A     Dimensional   
  Analysis     Approach , F. A. Davis Co., Philadelphia, PA, 
2012. 

   22.   J. B. Bassingthwaighte et al.,   Fractal     Physiology,     Oxford 
Univ. Press, New York, 1994.  

   23.   K. J. Niklas,   Plant     Allometry:     The     Scaling     of     Form     and   
   Process,     Univ. of Chicago Press, Chicago, 1994.  

   24.   “  Flow     of     Fluids     through     Valves,     Fittings,     and     Pipes,  ” Crane 
Valve Group, Long Beach, CA, 1957 (now updated as a CD-
ROM; see    <  http://www.cranevalves.com>).  

   25.   A. Roshko, “On the Development of Turbulent Wakes from 
Vortex Streets,”   NACA     Rep.     1191, 1954.  



References 337

   26.   G. W. Jones, Jr., “Unsteady Lift Forces Generated by Vortex 
Shedding about a Large, Stationary, Oscillating Cylinder at 
High Reynolds Numbers,”   ASME     Symp.     Unsteady     Flow,   
  1968.  

   27.   O. M. Griffi n and S. E. Ramberg, “The Vortex Street Wakes 
of Vibrating Cylinders,”   J.     Fluid     Mech.,     vol. 66, pt. 3, 1974, 
pp. 553–576.  

   28.     Encyclopedia     of     Science     and     Technology,     11th ed., McGraw-
Hill, New York, 2012.  

   29.    J. Kunes,  Dimensionless     Physical     Quantities     in     Science     and   
  Engineering , Elsevier, New York, 2012. 

   30.   V. P. Singh et al. (eds.),   Hydraulic     Modeling,   Water 
 Resources Publications LLC, Highlands Ranch, CO, 1999.  

   31.    L. Armstrong,  Hydraulic     Modeling     and     GIS , ESRI Press, 
La Vergne, TN, 2011. 

   32.   R. Ettema,   Hydraulic     Modeling:     Concepts     and     Practice,  
 American Society of Civil Engineers, Reston, VA, 2000.  

   33.   R. D. Blevins,   Applied     Fluid     Dynamics     Handbook,     van 
 Nostrand Reinhold, New York, 1984.  

   34.   W. J. Palm III,   Mechanical     Vibration  , Wiley, New York, 
2006.  

   35.   S. S. Rao,   Mechanical     Vibrations,   5th ed., Prentice-Hall, 
 Upper Saddle River, NJ, 20  10  .  

   36.   G. I. Barenblatt,   Scaling,   Cambridge University Press, 
 Cambridge, UK, 2003.  

   37.   L. J. Fingersh, “Unsteady Aerodynamics Experiment,”  
  Journal     of     Solar     Energy     Eng  i  neering,   vol. 123, Nov. 2001, 
p. 267.  

   38.   J. B. Barlow, W. H. Rae, and A. Pope,   Low-Speed     Wind   
   Tunnel     Testing,   Wiley, New York, 1999.  

   39.   B. H. Goethert,   Transonic     Wind     Tunnel     Testing,   Dover, 
New York, 2007.  

   40.   American Institute of Aeronautics and Astronautics,   Recom-
mended     Practice:     Wind     Tunnel     Testing,   2 vols., Reston, VA, 
2003.  

   41.   P. N. Desai, J. T. Schofi eld, and M. E. Lisano, “Flight Recon-
struction of the Mars Pathfi nder Disk-Gap-Band Parachute 
Drag Coeffi cients,”   J.     Spacecraft     and     Rockets  , vol. 42, no. 4, 
July–August 2005, pp. 672–676.  

  42. K.-H. Kim, “Recent Advances in Cavitation Research,” 
14th  International Symposium on Transport Phenomena, 
 Honolulu, HI, March 2012.  


