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Chapter 4
  Differential     Relations   

  for     Fluid     Flow  

  Motivation.  In analyzing fl uid motion, we might take one of two paths: (1) seeking 
an estimate of gross effects (mass fl ow, induced force, energy change) over a  fi nite  
region or control volume or (2) seeking the point-by-point details of a fl ow pattern 
by analyzing an  infi nitesimal  region of the fl ow. The former or gross-average view-
point was the subject of Chap. 3. 
  This chapter treats the second in our trio of techniques for analyzing fl uid motion: 
small-scale, or  differential,  analysis. That is, we apply our four basic conservation 
laws to an infi nitesimally small control volume or, alternately, to an infi nitesimal fl uid 
system. In either case the results yield the basic  differential     equations  of fl uid motion. 
Appropriate  boundary     conditions  are also developed. 
  In their most basic form, these differential equations of motion are quite diffi cult 
to solve, and very little is known about their general mathematical properties. How-
ever, certain things can be done that have great educational value. First, as shown in 
Chap. 5, the equations (even if unsolved) reveal the basic dimensionless parameters 
that govern fl uid motion. Second, as shown in Chap. 6, a great number of useful 
solutions can be found if one makes two simplifying assumptions: (1) steady fl ow 
and (2) incompressible fl ow. A third and rather drastic simplifi cation, frictionless fl ow, 
makes our old friend the Bernoulli equation valid and yields a wide variety of ideal-
ized, or  pe  r  fect-fl uid,  possible solutions. These idealized fl ows are treated in Chap. 8, 
and we must be careful to ascertain whether such solutions are in fact realistic when 
compared with actual fl uid motion. Finally, even the diffi cult general differential equa-
tions now yield to the approximating technique known as computational fl uid dynam-
ics (CFD) whereby the derivatives are simulated by algebraic relations between a 
fi nite number of grid points in the fl ow fi eld, which are then solved on a computer. 
Reference 1 is an example of a textbook devoted entirely to numerical analysis of 
fl uid motion. 
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222 Chapter 4 Differential Relations for Fluid Flow 

4.1 The Acceleration Field 
of a Fluid

  In Sec. 1.7 we established the cartesian vector form of a velocity fi eld that varies in 
space and time: 

V(r, t) 5 iu(x, y, z, t) 1 jυ(x, y, z, t) 1 kw(x, y, z, t)  (1.4)

 This is the most important variable in fl uid mechanics: Knowledge of the velocity vector 
fi eld is nearly equivalent to  solving  a fl uid fl ow problem. Our coordinates are fi xed in space, 
and we observe the fl uid as it passes by—as if we had scribed a set of coordinate lines on 
a glass window in a wind tunnel. This is the  Eulerian  frame of reference, as opposed to 
the Lagrangian frame, which follows the moving position of individual particles. 
  The Eulerian system can be visualized as a window through which we watch a 
fl ow. The coordinates ( x, y, z ) are fi xed, and the fl ow passes by. A fi xed instrument 
placed in the fl ow takes an Eulerian measurement. In contrast, Lagrangian coordinates 
follow the moving particles and are common in solid mechanics. Almost all articles and 
books about fl uid mechanics use the Eulerian system. Writers often use  tra  f  fi c  as an 
example. A traffi c engineer will remain fi xed and will measure the fl ow of cars going 
by—an Eulerian viewpoint. Conversely, the police will follow specifi c cars as a  function 
of time—a Lagrangian viewpoint. 
  To write Newton’s second law for an infi nitesimal fl uid system, we need to cal-
culate the acceleration vector fi eld  a  of the fl ow. Thus, we compute the total time 
derivative of the velocity vector: 

 a 5
dV
dt

5 i 
du

dt
1 j 

dυ

dt
1 k 

dw

dt
 

 Since each scalar component ( u ,  υ ,  w ) is a function of the four variables ( x ,  y ,  z ,  t ), 
we use the chain rule to obtain each scalar time derivative. For example, 

 
du(x, y, z, t)

dt
5
0u
0t

1
0u
0x

 
dx

dt
1
0u
0y

 
dy

dt
1
0u
0z

 
dz

dt
 

 But, by definition,  dx/dt  is the local velocity component  u , and  dy/dt     5     υ , and 
dz/dt     5     w . The total time derivative of  u  may thus be written as follows, with exactly 
similar expressions for the time derivatives of  υ  and  w : 

   ax 5
du

dt
5
0u
0t

1 u 
0u
0x

1 υ 
0u
0y

1 w 
0u
0z

5
0u
0t

1 (V ? § )u  

 ay 5
dυ

dt
 5

0υ
0t

1 u 
0υ
0x

1 υ 
0υ
0y

1 w 
0υ
0z

5
0υ
0t

1 (V ? § )υ   (4.1)

   az 5
dw

dt
5
0w
0t

 1 u 
0w
0x

 1 υ 
0w
0y

1 w 
0w
0z

 5
0w
0t

1 (V ? § )w 

 Summing these into a vector, we obtain the total acceleration: 

a 5
dV
dt

5
0V
0t

1 au 
0V
0x

1 υ 
0V
0y

1 w 
0V
0z
b 5

0V
0t

1 (V ? =)V  (4.2)

  Local Convective 

 The term  ≠  V / ≠  t  is called the  local acceleration,  which vanishes if the fl ow is steady—
that is, independent of time. The three terms in parentheses are called the  convective 
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4.1  The Acceleration Field of a Fluid  223

acceleration,  which arises when the particle moves through regions of spatially vary-
ing velocity, as in a nozzle or diffuser. Flows that are nominally “steady” may have 
large accelerations due to the convective terms. 
  Note our use of the compact dot product involving  V  and the gradient operator  = : 

 u 

0
0x

1 υ 

0
0y

1 w 

0
0z

5 V ? =  where  = 5 i 

0
0x

1 j 

0
0y

1 k 

0
0z

 

 The total time derivative—sometimes called the  substantial  or  material  derivative—
concept may be applied to any variable, such as the pressure: 

  
dp

dt
5
0p
0t

1 u 
0p
0x

1 υ 
0p
0y

1 w 

0p
0z

5
0p
0t

1 (V ? =)p  (4.3)  

 Wherever convective effects occur in the basic laws involving mass, momentum, or 
energy, the basic differential equations become nonlinear and are usually more com-
plicated than fl ows that do not involve convective changes. 
  We emphasize that this total time derivative follows a particle of fi xed identity, 
making it convenient for expressing laws of particle mechanics in the eulerian fl uid 
fi eld description. The operator  d / dt  is sometimes assigned a special symbol such as 
 D / Dt  as a further reminder that it contains four terms and follows a fi xed particle. 
  As another reminder of the special nature of  d / dt , some writers give it the name 
 substantial  or  mat  e  rial derivative . 

  EXAMPLE     4.1  

 Given the Eulerian velocity vector fi eld 

     V 5 3ti 1 xzj 1 ty2k  

 fi nd the total acceleration of a particle. 

  Solution  

  •   Assumptions:  Given three known unsteady velocity components,  u     5    3 t ,  υ     5     xz , and  w     5     ty  2 . 
  •   Approach:  Carry out all the required derivatives with respect to ( x ,  y ,  z ,  t ), substitute 

into the total acceleration vector, Eq. (4.2), and collect terms. 
  •   Solution step 1:  First work out the local acceleration  ≠  V / ≠  t : 

 
0V
0t

5 i 
0u
0t

1 j 
0υ
0t

1 k 
0w
0t

5 i 
0
0t

 (3t) 1 j 
0
0t

 (xz) 1 k 
0
0t

 (ty2) 5 3i 1 0j 1 y2 k 

  •   Solution step 2:  In a similar manner, the convective acceleration terms, from Eq. (4.2), are 

  u 
0V
0x

 5(3t) 
0
0x

 (3ti 1 xzj 1 ty2k) 5 (3t) (0i 1 zj 1 0k) 5 3tz j  

  υ 
0V
0y

 5(xz) 
0
0y

 (3ti 1 xzj 1 ty2k) 5 (xz) (0i 1 0j 1 2tyk) 5 2txyz k 

  w 
0V
0z

 5(ty2) 
0
0z

 (3ti 1 xzj 1 ty2k) 5 (ty2) (0i 1 xj 1 0k) 5 txy2 j  
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224 Chapter 4 Differential Relations for Fluid Flow 

  •   Solution step 3:  Combine all four terms above into the single “total” or “substantial” 
derivative: 

  
d V
dt

5
0V
0t

1 u 
0V
0x

1 υ 
0V
0y

1 w 
0V
0z

5 (3i 1 y2k) 1 3tzj 1 2txyzk 1 txy2j 

   5 3i 1 (3tz 1 txy2)j 1 (y2 1 2txyz)k  Ans.  

  •   Comments:  Assuming that  V  is valid everywhere as given, this total acceleration vector 
 d  V / dt  applies to all positions and times within the fl ow fi eld. 

 4.2 The Differential Equation 
of Mass Conservation

 Conservation of mass, often called the  continuity  relation, states that the fl uid mass 
cannot change. We apply this concept to a very small region. All the basic differential 
equations can be derived by considering either an elemental control volume or an 
elemental system. We choose an infi nitesimal fi xed control volume ( dx ,  dy ,  dz ), as in 
Fig. 4.1, and use our basic control volume relations from Chap. 3. The fl ow through 
each side of the element is approximately one-dimensional, and so the appropriate 
mass conservation relation to use here is 

  #
CV

0ρ
0t

 d 9 1 a
i

(ρi Ai Vi )out 2 a
i

(ρi AiVi)in 5 0  (3.22)  

 The element is so small that the volume integral simply reduces to a differential term: 

 #
CV

 
0ρ
0t

 d 9 <
0ρ
0t

 dx dy dz 

 The mass fl ow terms occur on all six faces, three inlets and three outlets. We make use 
of the fi eld or continuum concept from Chap. 1, where all fl uid properties are considered 
to be uniformly varying functions of time and position, such as  ρ     5     ρ ( x ,  y ,  z ,  t ). Thus, 
if  T  is the temperature on the left face of the element in Fig. 4.1, the right face will 
have a slightly different temperature T 1 (0T/0x) dx. For mass conservation, if  ρ  u  is 
known on the left face, the value of this product on the right face is ρu 1 (0ρu/0x) dx. 

y

z

dz

x

  u + ∂

∂x
(  u) dx  dy dz

Control volume

ρ ρu dy dzρ

dy

dx

Fig. 4.1 Elemental cartesian fi xed 
control volume showing the inlet 
and outlet mass fl ows on the x faces.
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4.2  The Differential Equation of Mass Conservation  225

  Figure 4.1 shows only the mass fl ows on the  x  or left and right faces. The fl ows 
on the  y  (bottom and top) and the  z  (back and front) faces have been omitted to avoid 
cluttering up the drawing. We can list all these six fl ows as follows: 

Face Inlet mass fl ow Outlet mass fl ow

x ρu dy dz cρu 1
0
0x

 (ρu) dx ddy dz

y ρυ dx dz cρυ 1
0
0y

(ρυ) dy d  dx dz

z ρw dx dy cρw 1
0
0z

 (ρw) dz d  dx dy

 Introduce these terms into Eq. (3.22) and we have 

 
0ρ
0t

 dx dy dz 1
0
0x

 (ρu) dx dy dz 1
0
0y

 (ρυ) dx dy dz 1
0
0z

 (ρw) dx dy dz 5 0 

 The element volume cancels out of all terms, leaving a partial differential equation 
involving the derivatives of density and velocity: 

  
0ρ
0t

1
0
0x

 (ρu) 1
0
0y

 (ρυ) 1
0
0z

 (ρw) 5 0  (4.4)  

 This is the desired result: conservation of mass for an infi nitesimal control volume. 
It is often called the  equation of continuity  because it requires no assumptions except 
that the density and velocity are continuum functions. That is, the fl ow may be either 
steady or unsteady, viscous or frictionless, compressible or incompressible. 1  However, 
the equation does not allow for any source or sink singularities within the element. 
  The vector gradient operator 

 = 5 i 
0
0x

1 j 
0
0y

1 k 
0
0z

 

 enables us to rewrite the equation of continuity in a compact form, not that it helps 
much in fi nding a solution. The last three terms of Eq. (4.4) are equivalent to the 
divergence of the vector  ρ  V  

  
0
0x

 (ρu) 1  
0
0y

 (ρυ) 1  
0
0z

 (ρw) ; = ? ( ρV)  (4.5)  

 so the compact form of the continuity relation is 

  
0ρ
0t

1 = ? (ρV) 5 0  (4.6)  

 In this vector form the equation is still quite general and can readily be converted to 
other coordinate systems. 

1One case where Eq. (4.4) might need special care is two-phase fl ow, where the density is 
 discontinuous between the phases. For further details on this case, see Ref. 2, for example.
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226 Chapter 4 Differential Relations for Fluid Flow 

 Cylindrical Polar Coordinates  The most common alternative to the cartesian system is the  cylindrical polar  coordi-
nate system, sketched in Fig. 4.2. An arbitrary point  P  is defi ned by a distance  z  along 
the axis, a radial distance  r  from the axis, and a rotation angle  θ  about the axis. The 
three independent orthogonal velocity components are an axial velocity  υ  z , a radial 
velocity  υ  r , and a circumferential velocity  υ  θ , which is positive counterclockwise—
that is, in the direction of increasing  θ . In general, all components, as well as pressure 
and density and other fl uid properties, are continuous functions of  r ,  θ ,  z , and  t . 
  The divergence of any vector function  A ( r ,  θ ,  z ,  t ) is found by making the trans-
formation of coordinates 

  r 5 (x2 1 y2)1/2    θ 5 tan21 y

x
    z 5 z  (4.7)  

 and the result is given here without proof 2  

  = ? A 5
1
r
 
0
0r

 (rAr) 1
1
r
 
0
0θ

 (Aθ) 1
0
0z

 (Az)  (4.8)  

 The general continuity equation (4.6) in cylindrical polar coordinates is thus 

  
0ρ
0t

1
1
r
 
0
0r

 (rρυr) 1
1
r
 
0
0θ

 (ρυθ) 1
0
0z

 (ρυz) 5 0  (4.9)  

 There are other orthogonal curvilinear coordinate systems, notably  spherical polar  
coordinates, which occasionally merit use in a fl uid mechanics problem. We shall not 
treat these systems here except in Prob. P4.12. 
  There are also other ways to derive the basic continuity equation (4.6) that are 
interesting and instructive. One example is the use of the divergence theorem. Ask 
your instructor about these alternative approaches. 

2See, for example, Ref. 3.

θ r

Typical point (r,   , z)

Base
line

r

z

r

r d

d

dr
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θ

θ

θ

υ υ

zυ
θ

dz

Fig. 4.2 Defi nition sketch for the 
cylindrical coordinate system.
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4.2  The Differential Equation of Mass Conservation  227

Steady Compressible Flow   If the fl ow is steady,  ≠ / ≠  t   ;  0 and all properties are functions of position only. Equa-
tion (4.6) reduces to 

 Cartesian: 
0
0x

 (ρu) 1
0
0y

 (ρυ) 1
0
0z

 (ρw) 5 0 

 Cylindrical: 
1
r
 
0
0r

 (rρυr) 1
1
r
 
0
0θ

 (ρυθ) 1
0
0z

 (ρυz) 5 0  (4.10)  

 Since density and velocity are both variables, these are still nonlinear and rather 
formidable, but a number of special-case solutions have been found. 

Incompressible Flow   A special case that affords great simplifi cation is incompressible fl ow, where the 
density changes are negligible. Then  ≠  ρ / ≠  t   <  0 regardless of whether the fl ow is 
steady or unsteady, and the density can be slipped out of the divergence in Eq. (4.6) 
and divided out. The result 

  § ? V 5 0  (4.11)  

 is valid for steady or unsteady incompressible fl ow. The two coordinate forms are 

 Cartesian: 
0u
0x

1
0υ
0y

1
0w
0z

 5  0  (4.12  a  )  

 Cylindrical: 
1
r
 
0
0r

 (rυr) 1
1
r
 
0
0θ

 (υθ) 1
0
0z

 (υz) 5 0  (4.12  b  )  

 These are  linear  differential equations, and a wide variety of solutions are known, as 
discussed in Chaps. 6 to 8. Since no author or instructor can resist a wide variety of 
solutions, it follows that a great deal of time is spent studying incompressible fl ows. 
Fortunately, this is exactly what should be done, because most practical engineering 
fl ows are approximately incompressible, the chief exception being the high-speed gas 
fl ows treated in Chap. 9. 
  When is a given fl ow approximately incompressible? We can derive a nice criterion 
by using some density approximations. In essence, we wish to slip the density out of 
the divergence in Eq. (4.6) and approximate a typical term such as 

    
0
0x

 (ρu) < ρ 
0u
0x

  (4.13)  

 This is equivalent to the strong inequality 

 ` u 
0ρ
0x

 ` ! ` ρ 
0u
0x
`  

 or `  δρ
ρ

 ` ! `  δV

V
`   (4.14)  

 As shown in Eq. (1.38), the pressure change is approximately proportional to the 
density change and the square of the speed of sound  a  of the fl uid: 

  δp < a2 δρ  (4.15)  
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228 Chapter 4 Differential Relations for Fluid Flow 

 Meanwhile, if elevation changes are negligible, the pressure is related to the velocity 
change by Bernoulli’s equation (3.52): 

  δp < 2ρV δV   (4.16)  

 Combining Eqs. (4.14) to (4.16), we obtain an explicit criterion for incompressible fl ow: 

  
V2

a2 5 Ma2 ! 1  (4.17)  

 where Ma    5     V / a  is the dimensionless  Mach number  of the fl ow. How small is small? 
The commonly accepted limit is 

  Ma # 0.3  (4.18)  

 For air at standard conditions, a fl ow can thus be considered incompressible if the 
velocity is less than about 100 m/s (330 ft/s). This encompasses a wide variety of 
airfl ows: automobile and train motions, light aircraft, landing and takeoff of high-
speed aircraft, most pipe fl ows, and turbomachinery at moderate rotational speeds. 
Further, it is clear that almost all liquid fl ows are incompressible, since fl ow velocities 
are small and the speed of sound is very large. 3  
  Before attempting to analyze the continuity equation, we shall proceed with the 
derivation of the momentum and energy equations, so that we can analyze them as a 
group. A very clever device called the  stream     function  can often make short work of 
the continuity equation, but we shall save it until Sec. 4.7. 
  One further remark is appropriate: The continuity equation is always important and 
must always be satisfi ed for a rational analysis of a fl ow pattern. Any newly discov-
ered momentum or energy “solution” will ultimately fail when subjected to critical 
analysis if it does not also satisfy the continuity equation. 

  EXAMPLE     4.2  

 Under what conditions does the velocity fi eld 

  V 5 (a1x 1 b1y 1 c1z)i 1 (a2x 1 b2y 1 c2z)j 1 (a3x 1 b3y 1 c3z)k 

 where  a  1 ,  b  1 , etc.    5    const, represent an incompressible fl ow that conserves mass? 

  Solution  

 Recalling that  V     5     u  i     1     υ  j     1     w  k , we see that  u     5    ( a  1  x     1     b  1  y     1     c  1  z ), etc. Substituting 
into Eq. (4.12 a ) for incompressible continuity, we obtain 

 
0
0x

 (a1x 1 b1y 1 c1z) 1
0
0y

 (a2x 1 b2y 1 c2z) 1
0
0z

 (a3x 1 b3y 1 c3z) 5 0 

 or a1 1 b2 1 c3 5 0  Ans.  

 At least two of constants  a  1 ,  b  2 , and  c  3  must have opposite signs. Continuity imposes no 
restrictions whatever on constants  b  1 ,  c  1 ,  a  2 ,  c  2 ,  a  3 , and  b  3 , which do not contribute to a 
volume increase or decrease of a differential element. 

3An exception occurs in geophysical fl ows, where a density change is imposed thermally or mechan-
ically rather than by the fl ow conditions themselves. An example is fresh water layered upon saltwater 
or warm air layered upon cold air in the atmosphere. We say that the fl uid is stratifi ed, and we must 
account for vertical density changes in Eq. (4.6) even if the velocities are small.

note
Highlight

note
Highlight



4.2  The Differential Equation of Mass Conservation  229

  EXAMPLE     4.3  

 An incompressible velocity fi eld is given by 

    u 5 a(x2 2 y2)    υ unknown    w 5 b   

 where  a  and  b  are constants. What must the form of the velocity component  υ  be? 

  Solution  

 Again Eq. (4.12 a ) applies: 

 
0
0x

 (ax2 2 ay2) 1
0υ
0y

1
0b
0z

5 0 

 or 
0υ
0y

5 22ax    (1)  

 This is easily integrated partially with respect to  y : 

  υ (x, y, z, t) 5 22axy 1 f (x, z, t)    Ans.  

 This is the only possible form for  υ  that satisfi es the incompressible continuity equation. 
The function of integration  f  is entirely arbitrary since it vanishes when  υ  is differentiated 
with respect to  y . 4  

  EXAMPLE     4.4  

 A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15 8 C and 1-atm 
pressure. Estimate the maximum allowable impeller rotational speed to avoid compress-
ibility effects at the blade tips. 

  Solution  

  •   Assumptions:  The maximum fl uid velocity is approximately equal to the impeller tip speed: 

 Vmax < Vrmax    where rmax 5 D/2 5 0.20 m 

  •   Approach:  Find the speed of sound of hydrogen and make sure that  V  max  is much less. 
  •   Property values:  From Table A.4 for hydrogen,  R     5    4124 m 2 /(s 2     2    K) and  k     5    1.41. 

From Eq. (1.39) at 15 8 C    5    288K, compute the speed of sound: 

 aH2
5 2kRT 5 21.41 34124 m2/(s2 2 K) 4 (288 K) < 1294 m/s 

 •  Final solution step:  Use our rule of thumb, Eq. (4.18), to estimate the maximum impel-
ler speed: 

 V 5 Vrmax # 0.3a    or    V(0.2 m) # 0.3(1294 m/s) 

  Solve for     V # 1940 
rad
s < 18,500 

rev
min

    Ans.  

•   Comments:  This is a high rate because the speed of sound of hydrogen, a light gas, is 
nearly four times greater than that of air. An impeller moving at this speed in air would 
create tip shock waves. 

4This is a very realistic fl ow that simulates the turning of an inviscid fl uid through a 608 angle; see 
Examples 4.7 and 4.9.
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230 Chapter 4 Differential Relations for Fluid Flow 

 4.3 The Differential Equation of 
Linear Momentum

 This section uses an elemental volume to derive Newton’s law for a moving fl uid. 
An alternate approach, which the reader might pursue, would be a force balance on 
an elemental moving particle. Having done it once in Sec. 4.2 for mass conservation, 
we can move along a little faster this time. We use the same elemental control volume 
as in Fig. 4.1, for which the appropriate form of the linear momentum relation is 

  a F 5
0
0t

  a #
CV

 Vρ d 9b 1 a (m
#
iVi)out 2 a (m

#
iVi)in  (3.40)  

 Again the element is so small that the volume integral simply reduces to a derivative term: 

  
0
0t

(Vρ d 9) <
0
0t

 (ρV) dx dy dz  (4.19)  

  The momentum fl uxes occur on all six faces, three inlets and three outlets. Refer-
ring again to Fig. 4.1, we can form a table of momentum fl uxes by exact analogy 
with the discussion that led up to the equation for net mass fl ux: 

  Faces   Inlet     momentum     fl ux   Outlet     momentum     fl ux  

    x   ρ  u  V   dy dz  cρuV 1
0
0x

(ρuV) dx d  dy dz 

    y   ρ  υ  V   dx dz  cρυV 1
0
0y

(ρυV) dy d  dx dz 

    z   ρ  w  V   dx dy  cρwV 1
0
0z

(ρwV) dz d  dx dy 

 Introduce these terms and Eq. (4.19) into Eq. (3.40), and get this intermediate result: 

  a F 5 dx dy dz c 0
0t

(ρV) 1
0
0x

 (ρuV) 1
0
0y

 (ρυV) 1
0
0z

 (ρwV) d   (4.20)  

 Note that this is a vector relation. A simplifi cation occurs if we split up the term in 
brackets as follows: 

 
0
0t

 (ρV) 1
0
0x

 (ρuV) 1
0
0y

 (ρυV) 1
0
0z

 (ρwV)  

    5 V c 0ρ
0t

1 = ? (ρV) d 1 ρ a 0V
0t

1 u 
0V
0x

1 υ 
0V
0y

1 w 
0V
0z
b  (4.21)  

 The term in brackets on the right-hand side is seen to be the equation of continuity, 
Eq. (4.6), which vanishes identically. The long term in parentheses on the right-hand 
side is seen from Eq. (4.2) to be the total acceleration of a particle that instantaneously 
occupies the control volume: 

  
0V
0t

1 u 
0V
0x

1 υ 
0V
0y

1 w 
0V
0z

5
dV
dt

  (4.2)  

 Thus, we have now reduced Eq. (4.20) to 

  a F 5 ρ 
dV
dt

 dx dy dz  (4.22)  
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4.3  The Differential Equation of Linear Momentum 231

 It might be good for you to stop and rest now and think about what we have just 
done. What is the relation between Eqs. (4.22) and (3.40) for an infi nitesimal control 
volume? Could we have  begun  the analysis at Eq. (4.22)? 
  Equation (4.22) points out that the net force on the control volume must be of 
differential size and proportional to the element volume. These forces are of two types, 
 body  forces and  surface  forces. Body forces are due to external fi elds (gravity, mag-
netism, electric potential) that act on the entire mass within the element. The only 
body force we shall consider in this book is gravity. The gravity force on the dif-
ferential mass  ρ   dx   dy   dz  within the control volume is 

  dFgrav 5 ρg dx dy dz  (4.23)  

 where  g  may in general have an arbitrary orientation with respect to the coordinate sys-
tem. In many applications, such as Bernoulli’s equation, we take  z  “up,” and  g     5     2  g  k . 
  The surface forces are due to the stresses on the sides of the control surface. These 
stresses are the sum of hydrostatic pressure plus viscous stresses  τ  ij  that arise from 
motion with velocity gradients: 

  σij 5 †2p 1 τxx τyx τzx

τxy 2p 1 τyy τzy

τxz τyz 2p 1 τzz

†   (4.24)  

 The subscript notation for stresses is given in Fig. 4.3. Unlike velocity  V , which is 
a  three-component  ve  c  tor,  stresses  σ  ij  and  τ  ij  and strain rates  ́   ij  are nine-component 
 tensors  and require two subscripts to defi ne each component. For further study of  tensor 
analysis,  see Refs. 6, 11, or 13. 
  It is not these stresses but their  gradients,  or differences, that cause a net force on 
the differential control surface. This is seen by referring to Fig. 4.4, which shows only 

y

z

x

σyy

σyz

σyx

σxy

σxz

σxx

σzx

σzz

σzy

σi j = Stress in j
         direction on a face
         normal to i axisFig. 4.3 Notation for stresses.
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232 Chapter 4 Differential Relations for Fluid Flow 

the  x -directed stresses to avoid cluttering up the drawing. For example, the leftward 
force  σ  xx   dy   dz  on the left face is balanced by the rightward force  σ  xx   dy   dz  on the 
right face, leaving only the net rightward force (0σxx /0x)  dx   dy   dz  on the right face. 
The same thing happens on the other four faces, so the net surface force in the  x  direction 
is given by 

  dFx,surf 5 c 0
0x

 (σxx) 1
0
0y

 (σyx) 1
0
0z

 (σzx) d  dx dy dz  (4.25)  

 We see that this force is proportional to the element volume. Notice that the stress 
terms are taken from the  top row  of the array in Eq. (4.24). Splitting this row into 
pressure plus viscous stresses, we can rewrite Eq. (4.25) as 

  
dFx

d 9
5 2

0p
0x

1
0
0x

 (τxx) 1
0
0y

 (τyx) 1
0
0z

 (τzx)  (4.26)  

 where  d 9     5     dx dy dz.  In an exactly similar manner, we can derive the  y  and  z  forces 
per unit volume on the control surface: 

 
dFy

d 9
5 2

0p
0y

1
0
0x

 (τxy) 1
0
0y

 (τyy) 1
0
0z

 (τzy) 

  
dFz

d 9
5 2

0p
0z

1
0
0x

 (τxz) 1
0
0y

 (τyz) 1
0
0z

 (τzz)   (4.27)  

 Now we multiply Eqs. (4.26) and (4.27) by  i ,  j , and  k , respectively, and add to obtain 
an expression for the net vector surface force: 

  a dF
d 9
b

surf
5 2=p 1 a dF

d 9
b

viscous
  (4.28)  

y

z

x

σxx dy dz

σzx dx dy

dy

σyx dx dz

dx

dz

(σyx +
∂σyx

∂y
dy) dx dz

(σxx +
∂σxx

∂x
dx) dy dz

(σzx +
∂σzx

∂z
dz) dx dy

 Fig. 4.4    Elemental cartesian fi xed 
control volume showing the surface 
forces in the  x  direction only.
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4.3  The Differential Equation of Linear Momentum 233

 where the viscous force has a total of nine terms: 

 a dF
d 9
b

viscous
5 i a 0τxx

0x
1
0τyx

0y
1
0τzx

0z
b 

  1 j a 0τxy

0x
1
0τyy

0y
1
0τzy

0z
b 

   1 ka 0τxz

0x
1
0τyz

0y
1
0τzz

0z
b  (4.29)  

 Since each term in parentheses in Eq. (4.29) represents the divergence of a stress 
component vector acting on the  x ,  y , and  z  faces, respectively, Eq. (4.29) is sometimes 
expressed in divergence form: 

  a dF
d 9
b

viscous
5 = ? τij  (4.30)  

 where τij 5 £τxx τyx τzx

τxy τyy τzy

τxz τyz τzz

§   (4.31)  

 is the viscous stress tensor acting on the element. The surface force is thus the sum 
of the  pressure gradient  vector and the divergence of the viscous stress tensor. 
 Substituting into Eq. (4.22) and utilizing Eq. (4.23), we have the basic differential 
momentum equation for an infi nitesimal element: 

  ρg 2 =p 1 = ? τij 5 ρ 
dV
dt

  (4.32)  

 where 
dV
dt

5
0V
0t

1 u 
0V
0x

1 υ 
0V
0y

1 w 
0V
0z

  (4.33)  

 We can also express Eq. (4.32) in words: 

 Gravity force per unit volume 1 pressure force per unit volume
 1 viscous force per unit volume 5 density 3 acceleration  (4.34)  

 Equation (4.32) is so brief and compact that its inherent complexity is almost  invisible. 
It is a  vector  equation, each of whose component equations contains nine terms. Let 
us therefore write out the component equations in full to illustrate the mathematical 
diffi culties inherent in the momentum equation: 

 ρgx 2
0p
0x

1
0τxx

0x
1
0τyx

0y
1
0τzx

0z
5 ρ a 0u

0t
1 u 

0u
0x

1 υ 
0u
0y

1 w 
0u
0z
b  

  ρgy 2
0p
0y

1
0τxy

0x
1
0τyy

0y
1
0τzy

0z
5 ρ a 0υ

0t
1 u 

0υ
0x

1 υ 
0υ
0y

1 w 
0υ
0z
b  (4.35)  

 ρgz 2
0p
0z

1
0τxz

0x
1
0τyz

0y
1
0τzz

0z
5 ρ a 0w

0t
1 u 

0w
0x

1 υ 
0w
0y

1 w 
0w
0z
b 
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234 Chapter 4 Differential Relations for Fluid Flow 

 This is the differential momentum equation in its full glory, and it is valid for any 
fl uid in any general motion, particular fl uids being characterized by particular viscous 
stress terms. Note that the last three “convective” terms on the right-hand side of each 
component equation in (4.35) are nonlinear, which complicates the general mathematical 
analysis. 

Inviscid Flow: Euler’s Equation   Equation (4.35) is not ready to use until we write the viscous stresses in terms of 
velocity components. The simplest assumption is frictionless fl ow  τ  ij     5    0, for which 
Eq. (4.32) reduces to 

  ρg 2 =p 5 ρ 

d V
dt

  (4.36)  

 This is  Euler’s equation  for inviscid fl ow. We show in Sec. 4.9 that Euler’s equation 
can be integrated along a streamline to yield the frictionless Bernoulli equation, (3.52) 
or (3.54). The complete analysis of inviscid fl ow fi elds, using continuity and the 
Bernoulli relation, is given in Chap. 8. 

Newtonian Fluid: Navier-Stokes 
Equations

  For a newtonian fl uid, as discussed in Sec. 1.9, the viscous stresses are proportional 
to the element strain rates and the coeffi cient of viscosity. For incompressible fl ow, 
the generalization of Eq. (1.23) to three-dimensional viscous fl ow is 5  

 τxx 5 2μ 
0u
0x
   τyy 5 2μ 

0υ
0y

    τzz 5 2μ 
0w
0z

 

  τxy 5 τyx 5 μ a 0u
0y

1
0υ
0x
b  τxz 5 τzx 5 μ a 0w

0x
1
0u
0z
b    (4.37)  

 τyz 5 τzy 5 μ a 0υ
0z

1
0w
0y
b  

 where  μ  is the viscosity coeffi cient. Substitution into Eq. (4.35) gives the differential 
momentum equation for a newtonian fl uid with constant density and viscosity: 

  ρgx 2
0p
0x

1 μ a 02u

0x2 1
02u

0y2 1
02u

0z2 b 5 ρ 
du

dt
 

   ρgy 2
0p
0y

1 μ a 02υ

0x2 1
02υ

0y2 1
02υ

0z2 b 5 ρ 
dυ

dt
    (4.38)  

  ρgz 2
0p
0z

1 μ a 02w

0x2 1
02w

0y2 1
02w

0z2 b 5 ρ 
dw

dt
 

 These are the incompressible fl ow  Navier-Stokes equations,  named after C. L. M. H. 
Navier (1785–1836) and Sir George G. Stokes (1819–1903), who are credited with 

 5 When compressibility is signifi cant, additional small terms arise containing the element volume 
expansion rate and a  second  coeffi cient of viscosity; see Refs. 4 and 5 for details.
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4.3  The Differential Equation of Linear Momentum 235

their derivation. They are second-order nonlinear partial differential equations and are 
quite formidable, but solutions have been found to a variety of interesting viscous 
fl ow problems, some of which are discussed in Sec. 4.11 and in Chap. 6 (see also 
Refs. 4 and 5). For compressible fl ow, see Eq. (2.29) of Ref. 5. 
  Equations (4.38) have four unknowns:  p ,  u ,  υ , and  w . They should be combined 
with the incompressible continuity relation [Eqs. (4.12)] to form four equations in 
these four unknowns. We shall discuss this again in Sec. 4.6, which presents the 
appropriate boundary conditions for these equations. 
  Even though the Navier-Stokes equations have only a limited number of known 
analytical solutions, they are amenable to fi ne-gridded computer modeling [1]. The 
fi eld of CFD is maturing fast, with many commercial software tools available. It is 
possible now to achieve approximate, but realistic, CFD results for a wide variety of 
complex two- and three-dimensional viscous fl ows. 

  EXAMPLE     4.5  

 Take the velocity fi eld of Example 4.3, with  b     5    0 for algebraic convenience 

  u 5 a(x2 2 y2)    υ 5 22axy    w 5 0 

 and determine under what conditions it is a solution to the Navier-Stokes momentum equa-
tions (4.38). Assuming that these conditions are met, determine the resulting pressure 
 distribution when  z  is “up” ( g  x     5    0,  g  y     5    0,  g  z     5     2  g ). 

  Solution  

  •   Assumptions:  Constant density and viscosity, steady fl ow ( u  and  υ  independent of time). 
  •   Approach:  Substitute the known ( u ,  υ ,  w ) into Eqs. (4.38) and solve for the pressure 

gradients. If a unique pressure function  p ( x ,  y ,  z ) can then be found, the given solution 
is exact. 

  •   Solution step 1:  Substitute ( u ,  υ ,  w ) into Eqs. (4.38) in sequence: 

 ρ(0) 2
0p
0x

1 μ(2a 2 2a 1 0) 5 ρ au 
0u
0x

1 υ 
0u
0y
b 5 2a2ρ (x3 1 xy2) 

 ρ(0) 2
0p
0y

1 μ(0 1 0 1 0) 5 ρ au 
0υ
0x

1 υ 
0υ
0y
b 5 2a2ρ(x2y 1 y3)  

 ρ(2g) 2
0p
0z

1 μ(0 1 0 1 0) 5 ρ au 
0w
0x

1 υ 
0w
0y
b 5 0  

 Rearrange and solve for the three pressure gradients: 

  
0p
0x

5 22a2ρ(x3 1 xy2)   
0p
0y

5 22a2ρ(x2y 1 y3)    
0p
0z

5 2ρg    (1)  

  •   Comment 1:  The vertical pressure gradient is  hydrostatic . [Could you have predicted this 
by noting in Eqs. (4.38) that  w     5    0?] However, the pressure is velocity-dependent in the 
 xy  plane. 
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236 Chapter 4 Differential Relations for Fluid Flow 

  •   Solution step 2:  To determine if the  x  and  y  gradients of pressure in Eq. (1) are 
 compatible, evaluate the mixed derivative ( ≠  2  p / ≠  x   ≠  y ); that is, cross-differentiate these 
two equations: 

 
0
0y

 a 0p
0x
b 5

0
0y

 322a2ρ(x3 1 xy2) 4 5 24a2ρxy 

 
0
0x

 a 0p
0y
b 5

0
0x

 322a2ρ(x2y 1 y3) 4 5 24a2ρxy 

  •   Comment 2:  Since these are equal, the given velocity distribution is indeed an  exact  
solution of the Navier-Stokes equations. 

  •   Solution step 3:  To fi nd the pressure, integrate Eqs. (1), collect, and compare. Start with 
 ≠  p / ≠  x . The procedure requires care! Integrate  partially  with respect to  x , holding  y  and  z  
constant: 

  p 5 # 0p0x  dx ƒ y,z 5 #22a2ρ(x3 1 xy2) dx ƒ y,z 5 22a2ρ ax4

4
1

x2y2

2
b 1 f1(y, z)  (2)  

 Note that the “constant” of integration  f  1  is a  function  of the variables that were not  integrated. 
Now differentiate Eq. (2) with respect to  y  and compare with  ≠  p / ≠  y  from Eq. (1): 

 
0p
0y

 ƒ (2) 5 22a2ρ x2y 1
0f1

0y
5
0p
0y

 ƒ (1) 5 22a2ρ(x2y 1 y3) 

 Compare: 
0f1

0y
5 22a2ρ y3  or  f1 5 # 0f1

0y
 dy ƒ z 5 22a2ρ 

y4

4
1 f2(z) 

  Collect terms: So far   p 5 22a2ρ ax4

4
1

x2y2

2
1

y4

4
b 1 f2(z)    (3)  

 This time the “constant” of integration  f  2  is a function of  z  only (the variable not integrated). 
Now differentiate Eq. (3) with respect to  z  and compare with  ≠  p / ≠  z  from Eq. (1): 

  
0p
0z

 ƒ (3) 5
df2

dz
5
0p
0z

 ƒ (1) 5 2ρg    or    f2 5 2ρgz 1 C    (4)  

 where  C  is a constant. This completes our three integrations. Combine Eqs. (3) and (4) to 
obtain the full expression for the pressure distribution in this fl ow: 

  p(x, y, z) 5 2ρgz 2 1
2 a2ρ(x4 1 y4 1 2x2y2) 1 C    Ans.     (5)  

 This is the desired solution. Do you recognize it? Not unless you go back to the beginning 
and square the velocity components: 

  u2 1 υ2 1 w2 5 V2 5 a2(x4 1 y4 1 2x2y2)    (6)  

  Comparing with Eq. (5), we can rewrite the pressure distribution as 

  p 1 1
2 ρV2 1 pgz 5 C    (7)  

  •   Comment:  This is Bernoulli’s equation (3.54). That is no accident, because the velocity 
distribution given in this problem is one of a family of fl ows that are solutions to the 
Navier-Stokes equations and that satisfy Bernoulli’s incompressible equation everywhere 
in the fl ow fi eld. They are called  irrotational fl ows,  for which curl  V     5     =     3     V     ;    0. This 
subject is discussed again in Sec. 4.9. 
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4.4  The Differential Equation of Angular Momentum 237

4.4 The Differential Equation of 
Angular Momentum

  Having now been through the same approach for both mass and linear momentum, 
we can go rapidly through a derivation of the differential angular momentum relation. 
The appropriate form of the integral angular momentum equation for a fi xed control 
volume is 

  aMo 5
0
0t
c #

CV

(r 3 V)ρ d 9 d 1 #
CS

(r 3 V)ρ(V ? n) dA  (3.59)  

 We shall confi ne ourselves to an axis through  O  that is parallel to the  z  axis and 
passes through the centroid of the elemental control volume. This is shown in Fig. 4.5. 
Let  θ  be the angle of rotation about  O  of the fl uid within the control volume. The 
only stresses that have moments about  O  are the shear stresses  τ  xy  and  τ  yx . We can 
evaluate the moments about  O  and the angular momentum terms about  O . A lot of 
algebra is involved, and we give here only the result: 

 cτxy 2 τyx 1
1

2
 
0
0x

 (τxy) dx 2
1

2
 
0
0y

 (τyx) dy d  dx dy dz  

  5
1

12
 ρ(dx dy dz)(dx2 1 dy2) 

d2θ

dt2   (4.39)  

 Assuming that the angular acceleration  d  2  θ / dt  2  is not infi nite, we can neglect all 
higher-order differential terms, which leaves a fi nite and interesting result: 

  τxy < τyx  (4.40)  

 Had we summed moments about axes parallel to  y  or  x , we would have obtained 
exactly analogous results: 

  τxz < τzx    τyz < τzy  (4.41)  

 There is  no  differential angular momentum equation. Application of the integral theo-
rem to a differential element gives the result, well known to students of stress analysis 
or strength of materials, that the shear stresses are symmetric:  τ  ij     5     τ  ji . This is the 

xy dy

dx

yx

Axis O

 = Rotation
       angle

yx + ∂

∂y
(  yx) dy

  xy + ∂
∂x

(  xy) dx

θ

τ τ

τ τ

τ

τ

 Fig. 4.5    Elemental cartesian fi xed 
control volume showing shear 
stresses that may cause a net angular 
acceleration about axis  O .
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only result of this section. 6  There is no differential equation to remember, which 
leaves room in your brain for the next topic, the differential energy equation.   

4.5 The Differential Equation 
of Energy7

  We are now so used to this type of derivation that we can race through the energy 
equation at a bewildering pace. The appropriate integral relation for the fi xed control 
volume of Fig. 4.1 is 

  Q
#

2 W
#

s 2 W
#
υ 5

0
0t

 a #
CV

eρ d 9b 1 #
CS

ae 1
p
ρ
b ρ(V ? n) dA  (3.66)  

 where W
#

s 5 0 because there can be no infi nitesimal shaft protruding into the con-
trol  volume. By analogy with Eq. (4.20), the right-hand side becomes, for this tiny 
element, 

 Q
#

2 W
#
υ 5 c 0

0t
 (ρe) 1

0
0x

 (ρuζ ) 1
0
0y

(ρυζ) 1
0
0z

 (ρwζ ) ddx dy dz 

 where  ζ     5     e     1     p / ρ . When we use the continuity equation by analogy with Eq. (4.21), 
this becomes 

  Q
#

2 W
#
υ 5 aρ 

de

dt
1 V ? =p 1 p= ? Vb dx dy dz  (4.42)  

Thermal Conductivity; 
Fourier’s Law

  To evaluate Q~, we neglect radiation and consider only heat conduction through the 
sides of the element. Experiments for both fl uids and solids show that the vector heat 
transfer per unit area,  q  ,  is proportional to the vector gradient of temperature,  =  T . 
This proportionality is called  Fo  u  rier’s     law     of     conduction,  which is analogous to 
Newton’s viscosity law: 

 q 5 2k§T  

  or :   qx 5 2k 

0T
0x

 ,  qy 5 2k 

0T
0y

 ,  qz 5 2k 

0T
0z

   (4.43)  

 where  k  is called the  thermal conductivity , a fl uid property that varies with tempera-
ture and pressure in much the same way as viscosity. The minus sign satisfi es the 
convention that heat fl ux is positive in the direction of decreasing temperature. 
 Fourier’s law is dimensionally consistent, and  k  has SI units of joules per (sec- meter-
kelvin) and can be correlated with  T  in much the same way as Eqs. (1.27) and (1.28) 
for gases and liquids, respectively. 
  Figure 4.6 shows the heat fl ow passing through the  x  faces, the  y  and  z  heat fl ows 
being omitted for clarity. We can list these six heat fl ux terms: 

 6 We are neglecting the possibility of a fi nite  couple  being applied to the element by some powerful 
external force fi eld. See, for example, Ref. 6.

 7 This section may be omitted without loss of continuity.
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   Faces   Inlet     heat     fl ux   Outlet     heat     fl ux  

    x   q  x   dy dz  cqx 1
0
0x

 (qx) dx d  dy dz 

    y   q  y   dx dz  cqy 1
0
0y

 (qy) dy d  dx dz 

    z   q  z   dx dy  cqz 1
0
0z

 (qz) dz d  dx dy 

  By adding the inlet terms and subtracting the outlet terms, we obtain the net heat 
added to the element: 

  Q
#

5 2 c 0
0x

 (qx) 1
0
0y

 (qy) 1
0
0z

 (qz) ddx dy dz 5 2= ? q dx dy dz  (4.44)  

 As expected, the heat fl ux is proportional to the element volume. Introducing Fourier’s 
law from Eq. (4.43), we have 

  Q
#

5 = ? (k=T ) dx dy dz  (4.45)  

  The rate of work done by viscous stresses equals the product of the stress compo-
nent, its corresponding velocity component, and the area of the element face.  Figure 4.6 
shows the work rate on the left  x  face is 

  W
#
υ,LF 5 wx dy dz    where wx 5 2(uτxx 1 υ τxy 1 wτxz)  (4.46)  

 (where the subscript LF stands for left face) and a slightly different work on the right 
face due to the gradient in  w  x . These work fl uxes could be tabulated in exactly the 
same manner as the heat fl uxes in the previous table, with  w  x  replacing  q  x , and so on. 
After outlet terms are subtracted from inlet terms, the net viscous work rate becomes 

 W
#
υ 5 2 c 0

0x
 (uτxx 1 υ τxy 1 wτxz) 1

0
0y

 (uτyx 1 υ τyy 1 wτyz) 

  1
0
0z

 (uτzx 1 υτzy 1 wτzz) ddx dy dz  

   5 2= ? (V ? τij) dx dy dz   (4.47)  

Heat flow per
unit area:

qx = –k ∂T
∂x

wx

Viscous
work rate
per unit

area: wx = –(u  xx +     xy + w  xz)

dz

dy

dx

qx + ∂
∂x

(qx) dx

wx + ∂
∂x

(wx) dx

τ   υτ  τ

 Fig. 4.6    Elemental cartesian control 
volume showing heat fl ow and 
viscous work rate terms in the 
 x  direction.
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 We now substitute Eqs. (4.45) and (4.47) into Eq. (4.43) to obtain one form of the 
differential energy equation: 

 ρ 
de

dt
1 V ? =p 1 p= ? V 5 = ? (k =T ) 1 = ? (V ? τij) 

where e 5 û 1 1
2V

2 1 gz
  (4.48)

 A more useful form is obtained if we split up the viscous work term: 

= ? (V ? τij) ; V ? (= ? τij) 1 £   (4.49)

 where  F  is short for the  viscous-dissipation function . 8  For a newtonian incompressible 
viscous fl uid, this function has the form 

 £ 5 μ c2 a 0u
0x
b2

1 2 a 0υ
0y
b2

1 2 a 0w
0z
b2

1 a 0υ
0x

1
0u
0y
b2

 

1 a 0w
0y

1
0υ
0z
b2

1 a 0u
0z

1
0w
0x
b2 d   (4.50)

 Since all terms are quadratic, viscous dissipation is always positive, so a viscous fl ow 
always tends to lose its available energy due to dissipation, in accordance with the 
second law of thermodynamics. 
  Now substitute Eq. (4.49) into Eq. (4.48), using the linear momentum equation 
(4.32) to eliminate  =     ?     τ  ij . This will cause the kinetic and potential energies to cancel, 
leaving a more customary form of the general differential energy equation: 

ρ 
dû

dt
1 p(= ? V) 5 = ? (k =T ) 1 £   (4.51)

 This equation is valid for a newtonian fl uid under very general conditions of unsteady, 
compressible, viscous, heat-conducting fl ow, except that it neglects radiation heat 
transfer and internal  sources  of heat that might occur during a chemical or nuclear 
reaction. 
  Equation (4.51) is too diffi cult to analyze except on a digital computer [1]. It is 
customary to make the following approximations: 

dû < cυ dT  cυ , μ, k, ρ < const  (4.52)

 Equation (4.51) then takes the simpler form, for  =     ?     V     5    0, 

ρcυ 
dT

dt
5 k§2T 1 £   (4.53)

 which involves temperature  T  as the sole primary variable plus velocity as a second-
ary variable through the total time-derivative operator: 

dT

dt
5
0T
0t

1 u 
0T
0x

1 υ 
0T
0y

1 w 
0T
0z

  (4.54)

8 For further details, see, Ref. 5, p. 72.



4.6  Boundary Conditions for the Basic Equations 241

 A great many interesting solutions to Eq. (4.53) are known for various fl ow condi-
tions, and extended treatments are given in advanced books on viscous fl ow [4, 5] 
and books on heat transfer [7, 8]. 
  One well-known special case of Eq. (4.53) occurs when the fl uid is at rest or has 
negligible velocity, where the dissipation  F    and convective terms become negligible: 

  ρcp 
0T
0t

5 k§2T   (4.55)  

 The change from  c  υ  to  c  p  is correct and justifi ed by the fact that, when pressure terms 
are neglected from a gas fl ow energy equation [4, 5], what remains is approximately 
an enthalpy change, not an internal energy change. This is called the  heat conduction 
equation  in applied mathematics and is valid for solids and fl uids at rest. The solution 
to Eq.   (4.55) for various conditions is a large part of courses and books on heat 
transfer. 
  This completes the derivation of the basic differential equations of fl uid motion. 

4.6 Boundary Conditions for 
the Basic Equations

  There are three basic differential equations of fl uid motion, just derived. Let us sum-
marize those here: 

 Continuity: 
0ρ
0t

1 = ? (ρV) 5 0  (4.56)  

 Momentum: ρ 
dV
dt

5 ρg 2 =p 1 = ? τij  (4.57)  

 Energy: ρ 
dû

dt
1 p(= ? V) 5 = ? (k =T ) 1 £   (4.58)  

 where  F  is given by Eq. (4.50). In general, the density is variable, so these three 
equations contain fi ve unknowns,  ρ ,  V ,  p ,  û , and  T . Therefore, we need two additional 
relations to complete the system of equations. These are provided by data or algebraic 
expressions for the state relations of the thermodynamic properties: 

  ρ 5 ρ(p, T )    û 5 û(p, T)  (4.59)  

 For example, for a perfect gas with constant specifi c heats, we complete the system 
with 

  ρ 5
p

RT
    û 5 #cυ dT < cυ T 1 const  (4.60)  

 It is shown in advanced books [4, 5] that this system of equations (4.56) to (4.59) is 
well posed and can be solved analytically or numerically, subject to the proper bound-
ary conditions. 
  What are the proper boundary conditions? First, if the fl ow is unsteady, there must 
be an  initial     co  n  dition  or initial spatial distribution known for each variable: 

 At t 5 0: ρ, V, p, û, T 5 known f (x, y, z)  (4.61)  

 Thereafter, for all times  t  to be analyzed, we must know something about the variables 
at each  boundary  enclosing the fl ow. 
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  Figure 4.7 illustrates the three most common types of boundaries encountered in 
fl uid fl ow analysis: a solid wall, an inlet or outlet, and a liquid–gas interface. 
  First, for a solid, impermeable wall, there can be slip and temperature jump in a 
viscous heat-conducting fl uid: 

 No-slip:            Vfluid 5 Vwall       Tfluid 5 Twall 

 Rarefied gas: ufluid 2 uwall < / 

0u
0n

Zwall  Tfluid 2 Twall < a 2ζ

ζ 1 1
b k

μcp
/
0T
0n

Zwall   (4.62) 

 where, for the rarefi ed gas,  n  is normal to the wall, u is parallel to the wall, ℓ is the 
mean free path of the gas [see Eq. (1.37)], and  ζ  denotes, just this one time, the 
specifi c heat ratio. The above so-called  temper  a  ture-jump     relation  for gases is given 
here only for completeness and will not be studied (see page 48 of Ref. 5). A few 
velocity-jump assignments will be given. 
  Second, at any inlet or outlet section of the fl ow, the complete distribution of 
velocity, pressure, and temperature must be known for all times: 

 Inlet or outlet: Known V, p, T   (4.63)  

 These inlet and outlet sections can be and often are at  6     ̀  , simulating a body 
immersed in an infi nite expanse of fl uid. 
  Finally, the most complex conditions occur at a liquid–gas interface, or free  surface, 
as sketched in Fig. 4.7. Let us denote the interface by 

 Interface: z 5 η(x, y, t)  (4.64)  

Z

Gas

Liquid

Inlet:
known V, p, T Outlet:

known V, p, T

Solid contact:
(V, T)fluid = (V, T)wall

Solid impermeable wall

Liquid–gas interface z = η(x, y, t):
pliq = pgas –  (R–1 + R–1)x y

wliq = wgas =
d  

dt
Equality of q and     across interface

η
Υ

τ

 Fig. 4.7    Typical boundary 
conditions in a viscous heat-
conducting fl uid fl ow analysis.
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 Then there must be equality of vertical velocity across the interface, so that no holes 
appear between liquid and gas: 

  wliq 5 wgas 5
dη

dt
5
0η
0t

1 u 
0η
0x

1 υ 
0η
0y

  (4.65)  

 This is called the  kinematic boundary condition . 
  There must be mechanical equilibrium across the interface. The viscous shear 
stresses must balance: 

  (τzy)liq 5 (τzy)gas    (τzx)liq 5 (τzx)gas  (4.66)  

 Neglecting the viscous normal stresses, the pressures must balance at the interface 
except for surface tension effects: 

  pliq 5 pgas 2 Y(R21
x 1 R21

y )  (4.67)  

 which is equivalent to Eq. (1.33). The radii of curvature can be written in terms of 
the free surface position  η : 

  R21
x 1 R21

y 5
0
0x
c 0η/0x

21 1 (0η/0x)2 1 (0η/0y)2
d  

   1
0
0y
c 0η/0y

21 1 (0η/0x)2 1 (0η/0y)2
d   (4.68)  

  Finally, the heat transfer must be the same on both sides of the interface, since no 
heat can be stored in the infi nitesimally thin interface: 

  (qz)liq 5 (qz)gas  (4.69)  

 Neglecting radiation, this is equivalent to 

  ak 
0T
0z
b

liq
5 ak 

0T
0z
b

gas
  (4.70)  

 This is as much detail as we wish to give at this level of exposition. Further and even 
more complicated details on fl uid fl ow boundary conditions are given in Refs. 5 and 9. 

Simplifi ed Free Surface Conditions  In the introductory analyses given in this book, such as open-channel fl ows in 
Chap. 10, we shall back away from the exact conditions (4.65) to (4.69) and assume 
that the upper fl uid is an “atmosphere” that merely exerts pressure on the lower fl uid, 
with shear and heat conduction negligible. We also neglect nonlinear terms involving 
the slopes of the free surface. We then have a much simpler and linear set of condi-
tions at the surface: 

 pliq < pgas 2 Ya 02η

0x2 1
02η

0y2 b   wliq <
0η
0t

 

  a 0V
0z
b

liq
< 0   a 0T

z
b

liq
< 0  (4.71)  
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 In many cases, such as open-channel fl ow, we can also neglect surface tension, so 

  pliq < patm  (4.72)  

 These are the types of approximations that will be used in Chap. 10. The nondimen-
sional forms of these conditions will also be useful in Chap. 5. 

Incompressible Flow with 
Constant Properties

  Flow with constant  ρ ,  μ , and  k  is a basic simplifi cation that will be used, for example, 
throughout Chap. 6. The basic equations of motion (4.56) to (4.58) reduce to 

 Continuity: = ? V 5 0  (4.73)  

 Momentum: ρ 

d V
dt

5 ρg 2 =p 1 μ=2V  (4.74)  

 Energy: ρcp 
dT

dt
5 k=2T 1 £   (4.75)  

 Since  ρ  is constant, there are only three unknowns:  p ,  V , and  T . The system is closed. 9  
Not only that, the system splits apart: Continuity and momentum are independent of 
 T . Thus we can solve Eqs. (4.73) and (4.74) entirely separately for the pressure and 
velocity, using such boundary conditions as 

 Solid surface: V 5 Vwall  (4.76)  

 Inlet or outlet: Known V, p  (4.77)  

 Free surface: p < pa    w <
0η
0t

  (4.78)   

 Later, usually in another course, 10  we can solve for the temperature distribution from 
Eq. (4.75), which depends on velocity  V  through the dissipation  F  and the total time-
derivative operator  d / dt .  

Inviscid Flow Approximations   Chapter 8 assumes inviscid fl ow throughout, for which the viscosity  μ     5    0. The 
momentum equation (4.74) reduces to 

  ρ 
d V
dt

5 ρg 2 =p  (4.79)  

 This is  Euler’s equation;  it can be integrated along a streamline to obtain Bernoulli’s 
equation (see Sec. 4.9). By neglecting viscosity we have lost the second-order deriv-
ative of  V  in Eq. (4.74); therefore, we must relax one boundary condition on velocity. 
The only mathematically sensible condition to drop is the no-slip condition at the wall. 
We let the fl ow slip parallel to the wall but do not allow it to fl ow into the wall. The 
proper inviscid condition is that the normal velocities must match at any solid surface: 

 Inviscid fl ow: (Vn)fluid 5 (Vn)wall  (4.80)  

 9 For this system, what are the thermodynamic equivalents to Eq. (4.59)?
 10 Since temperature is entirely  uncoupled  by this assumption, we may never get around to solving 

for it here and may ask you to wait until you take a course on heat transfer.
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 In most cases the wall is fi xed; therefore, the proper inviscid fl ow condition is 

  Vn 5 0  (4.81)  

 There is  no  condition whatever on the tangential velocity component at the wall in 
inviscid fl ow. The tangential velocity will be part of the solution to an inviscid fl ow 
analysis (see Chap. 8). 

  EXAMPLE     4.6  

 For steady incompressible laminar fl ow through a long tube, the velocity distribution is 
given by 

  υz 5 U a1 2
r 2

R2b   υr 5 υθ 5 0 

 where  U  is the maximum, or centerline, velocity and  R  is the tube radius. If the wall tem-
perature is constant at  T  w  and the temperature  T     5     T ( r ) only, fi nd  T ( r ) for this fl ow. 

  Solution  

 With  T     5     T ( r ), Eq. (4.75) reduces for steady fl ow to 

  ρcpυr 
dT

dr
5

k

r
 
d

dr
 ar 

dT

dr
b 1 μadυz

dr
b2

  (1)  

 But since  υ  r     5    0 for this fl ow, the convective term on the left vanishes. Introduce  υ  z  into 
Eq. (1) to obtain 

  
k

r
 
d

dr
 ar 

dT

dr
b 5 2μadυz

dr
b2

5 2
4U2μr 2

R4   (2)  

 Multiply through by  r / k  and integrate once: 

  r 
dT

dr
5 2

μU2r4

kR4 1 C1  (3)  

 Divide through by  r  and integrate once again: 

  T 5 2
μU2r4

4kR4 1 C1 ln r 1 C2  (4)  

 Now we are in position to apply our boundary conditions to evaluate  C  1  and  C  2 . 
  First, since the logarithm of zero is  2` , the temperature at  r     5    0 will be infi nite unless 

  C1 5 0  (5)  

 Thus, we eliminate the possibility of a logarithmic singularity. The same thing will happen 
if we apply the  symmetry  condition  dT / dr     5    0 at  r     5    0 to Eq. (3). The constant  C  2  is then 
found by the wall-temperature condition at  r     5     R : 

 T 5 Tw 5 2
μU2

4k
 1 C2 
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 or C2 5 Tw 1
μU2

4k
    (6)

 The correct solution is thus 

T(r) 5 Tw 1
μU2

4k
 a1 2

r4

R4b    Ans.     (  7  )

 which is a fourth-order parabolic distribution with a maximum value  T  0     5     T  w     1     μ  U  2 /(4 k ) 
at the centerline. 

4.7 The Stream Function   We have seen in Sec. 4.6 that even if the temperature is uncoupled from our system 
of equations of motion, we must solve the continuity and momentum equations 
simultaneously for pressure and velocity. The  stream function   ψ  is a clever device 
that allows us to satisfy the continuity equation and then solve the momentum 
 equation directly for the single variable  ψ . Lines of constant  ψ    are streamlines of 
the fl ow. 
  The stream function idea works only if the continuity equation (4.56) can be 
reduced to  two  terms. In general, we have  four  terms: 

 Cartesian: 
0ρ
0t

1
0
0x

 (ρu) 1
0
0y

 (ρυ) 1
0
0z

 (ρw) 5 0  (4.82  a  )

 Cylindrical: 
0ρ
0t

1
1
r
 
0
0r

 (rρυr) 1
1
r
 
0
0θ

 (ρυθ) 1
0
0z

 (ρυz) 5 0  (4.82  b  )

 First, let us eliminate unsteady fl ow, which is a peculiar and unrealistic application 
of the stream function idea. Reduce either of Eqs. (4.82) to any  two  terms. The most 
common application is incompressible fl ow in the  xy  plane: 

0u
0x

1
0υ
0y

5 0  (4.83)

 This equation is satisfi ed  identically  if a function  ψ  ( x ,  y ) is defi ned such that Eq. (4.83) 
becomes 

0
0x

 a 0ψ
0y
b 1

0
0y

 a20ψ
0x
b ; 0  (4.84)

 Comparison of (4.83) and (4.84) shows that this new function  ψ  must be defi ned such 
that 

u 5
0ψ
0y

    υ 5 2
0ψ
0x

  (4.85)

 or V 5 i 
0ψ
0y

2 j 
0ψ
0x
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 Is this legitimate? Yes, it is just a mathematical trick of replacing two variables ( u  and 
 υ ) by a single higher-order function  ψ . The vorticity 11  or curl  V  is an interesting 
function: 

  curl V 5 2k§ 2ψ    where    §2ψ 5
02ψ

0x2 1
02ψ

0y2   (4.86)   

 Thus, if we take the curl of the momentum equation (4.74) and utilize Eq. (4.86), we 
obtain a single equation for  ψ  for incompressible fl ow: 

  
0ψ
0y

 
0
0x

 (§2ψ) 2
0ψ
0x

 
0
0y

 (§2ψ) 5 ν§2(§2ψ)  (4.87)  

 where  ν     5     μ / ρ  is the kinematic viscosity. This is partly a victory and partly a defeat: 
Eq. (4.87) is scalar and has only one variable,  ψ , but it now contains  fourth -order 
derivatives and probably will require computer analysis. There will be four boundary 
conditions required on  ψ . For example, for the fl ow of a uniform stream in the 
 x    direction past a solid body, the four conditions would be 

 At infi nity: 
0ψ
0y

5 Uq   
0ψ
0x

5 0  

 At the body: 
0ψ
0y

5
0ψ
0x

5 0  (4.88)  

 Many examples of numerical solution of Eqs. (4.87) and (4.88) are given in Ref. 1. 
  One important application is inviscid, incompressible,  irrotational  fl ow 12  in the  xy  
plane, where curl  V   ;  0. Equations (4.86) and (4.87) reduce to 

  §2ψ 5
02ψ

0x2 1
02ψ

0y2 5 0  (4.89)   

 This is the second-order  Laplace equation  (Chap. 8), for which many solutions and 
analytical techniques are known. Also, boundary conditions like Eq. (4.88) reduce to 

 At infi nity: ψ 5 Uqy 1 const  (4.90)  

 At the body: ψ 5 const  

 It is well within our capability to fi nd some useful solutions to Eqs. (4.89) and (4.90), 
which we shall do in Chap. 8. 

Geometric Interpretation of ψ   The fancy mathematics above would serve alone to make the stream function immor-
tal and always useful to engineers. Even better, though,  ψ  has a beautiful geometric 
interpretation: Lines of constant  ψ  are  strea  m  lines  of the fl ow. This can be shown   as  
 follows: From Eq. (1.41) the defi nition of a streamline in two-dimensional fl ow is 

 
dx
u

5
dy

υ
 

 or u dy 2 υ dx 5 0   streamline  (4.91)  

 11 See Section 4.8.
 12 See Section 4.8.
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 Introducing the stream function from Eq. (4.85), we have 

  
0ψ
0x

 dx 1
0ψ
0y

 dy 5 0 5 dψ  (4.92)  

 Thus the change in  ψ  is zero along a streamline, or 

  ψ 5 const along a streamline  (4.93)  

 Having found a given solution  ψ  ( x ,  y ), we can plot lines of constant  ψ  to give the 
streamlines of the fl ow. 
  There is also a physical interpretation that relates  ψ  to volume fl ow. From Fig. 4.8, 
we can compute the volume fl ow  dQ  through an element  ds  of control surface of unit 
depth: 

 dQ 5 (V ? n) dA 5 ai 0ψ
0y

2 j 
0ψ
0x
b ? ai dy

ds
2 j 

dx

ds
b ds(1) 

   5
0ψ
0x

 dx 1
0ψ
0y

 dy 5 dψ   (4.94)  

 Thus the change in  ψ  across the element is numerically equal to the volume fl ow 
through the element. The volume fl ow between any two streamlines in the fl ow fi eld 
is equal to the change in stream function between those streamlines: 

  Q1S2 5 #
2

1

(V ? n) dA 5 #
2

1

dψ 5 ψ2 2 ψ1  (4.95)  

 Further, the direction of the fl ow can be ascertained by noting whether  ψ  increases 
or decreases. As sketched in Fig. 4.9, the fl ow is to the right if  ψ  U  is greater than  ψ  L , 
where the subscripts stand for upper and lower, as before; otherwise the fl ow is to 
the left. 
  Both the stream function and the velocity potential were invented by the French 
mathematician Joseph Louis Lagrange and published in his treatise on fl uid mechanics 
in 1781. 

dQ = (V • n) dA = dψ

Control surface
(unit depth
into paper)

dy

dx

V = iu + jv

n =
dy

ds
i –

dx

ds
j

ds

 Fig. 4.8    Geometric interpretation 
of stream function: volume fl ow 
through a differential portion of a 
control surface.
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  EXAMPLE     4.7  

 If a stream function exists for the velocity fi eld of Example 4.5 

  u 5 a(x2 2 y2)  υ 5 22axy w 5 0 

 fi nd it, plot it, and interpret it. 

  Solution  

  •   Assumptions:  Incompressible, two-dimensional fl ow. 
  •   Approach:  Use the defi nition of stream function derivatives, Eqs. (4.85), to fi nd  ψ  ( x ,    y ). 
  •   Solution step 1:  Note that this velocity distribution was also examined in Example 4.3. 

It satisfi es continuity, Eq. (4.83), but let’s check that; otherwise  ψ  will not exist: 

 
0u
0x

1
0υ
0y

5
0
0x

 3a(x2 2 y2) 4 1
0
0y

 (22axy) 5 2ax 1 (22ax) ; 0  checks 

 Thus we are certain that a stream function exists. 

  •   Solution step 2:  To fi nd  ψ , write out Eqs. (4.85) and integrate: 

  u 5
0ψ
0y

5 ax2 2 ay2  (1)  

  υ 5 2
0ψ
0x

5 22axy  (2)  

 and work from either one toward the other. Integrate (1) partially 

  ψ 5 ax2y 2
ay3

3
1 f(x)  (3)  

 Differentiate (3) with respect to  x  and compare with (2) 

  
0ψ
0x

5 2axy 1 f ¿(x) 5 2axy  (4)  

 Therefore  f   9 ( x )    5    0, or  f     5    constant. The complete stream function is thus found: 

  ψ 5 a ax2y 2
y3

3
b 1 C  Ans  .   (  5  )  

 Fig. 4.9    Sign convention for fl ow in 
terms of change in stream function: 
( a ) fl ow to the right if  ψ  U  is greater; 
( b ) fl ow to the left if  ψ  L  is greater.

Flow

(a) (b)

Flow

ψL

ψU >ψL

ψU <ψL

ψL
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 To plot this, set  C     5    0 for convenience and plot the function 

  3x2y 2 y3 5
3ψ

a
  (6)  

 for constant values of  ψ . The result is shown in Fig. E4.7 a  to be six 60 8  wedges of circulat-
ing motion, each with identical fl ow patterns except for the arrows. Once the streamlines are 
labeled, the fl ow directions follow from the sign convention of Fig. 4.9. How can the fl ow 
be interpreted? Since there is slip along all streamlines, no streamline can truly represent a 
solid surface in a viscous fl ow. However, the fl ow could represent the impingement of three 
incoming streams at 60, 180, and 300 8 . This would be a rather unrealistic yet exact solution 
to the Navier-Stokes equations, as we showed in Example 4.5. 

  E4.7  a   

 = 2a
a

0

–2a

   = 2a

a

 –a

–2a

x

y

60°

–a
0

a
2 a

The origin is a
stagnation point

60°

60°

60°

60°

–a

ψ

 = – 2aψ

ψ

  E4.7  b   

Flow around a 60° corner

Flow around a
rounded 60° corner

Incoming stream impinging
against a 120° corner

 By allowing the fl ow to slip as a frictionless approximation, we could let any given 
streamline be a body shape. Some examples are shown in Fig. E4.7 b . 
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  A stream function also exists in a variety of other physical situations where only 
two coordinates are needed to defi ne the fl ow. Three examples are illustrated here. 

 Steady Plane Compressible Flow  Suppose now that the density is variable but that  w     5    0, so that the fl ow is in the  xy  
plane. Then the equation of continuity becomes 

  
0
0x

 (ρu) 1
0
0y

 (ρυ) 5 0  (4.96)  

 We see that this is in exactly the same form as Eq. (4.84). Therefore a compressible 
fl ow stream function can be defi ned such that 

  ρu 5
0ψ
0y

   ρυ 5 2
0ψ
0x

  (4.97)  

 Again lines of constant  ψ  are streamlines of the fl ow, but the change in  ψ  is now 
equal to the  mass  fl ow, not the volume fl ow: 

 dm
#

5 ρ(V ? n) dA 5 dψ 

 or m
#
1S2 5 #

2

1

ρ(V ? n) dA 5 ψ2 2 ψ1  (4.98)  

 The sign convention on fl ow direction is the same as in Fig. 4.9. This particular stream 
function combines density with velocity and must be substituted into not only momen-
tum but also the energy and state relations (4.58) and (4.59) with pressure and tem-
perature as companion variables. Thus the compressible stream function is not a great 
victory, and further assumptions must be made to effect an analytical solution to a 
typical problem (see, for instance, Ref. 5, Chap. 7). 

Incompressible Plane Flow in 
Polar Coordinates

  Suppose that the important coordinates are  r  and  θ , with  υ  z     5    0, and that the density 
is constant. Then Eq. (4.82 b ) reduces to 

  
1
r
 
0
0r

 (rυr) 1
1
r
 
0
0θ

 (υθ) 5 0  (4.99)  

 After multiplying through by  r , we see that this is the analogous form of Eq. (4.84): 

  
0
0r

 a 0ψ
0θ
b 1

0
0θ

 a20ψ
0r
b 5 0  (4.100)  

 By comparison of (4.99) and (4.100) we deduce the form of the incompressible polar 
coordinate stream function: 

  υr 5
1
r
 
0ψ
0θ

   υθ 5 2
0ψ
0r

  (4.101)  

 Once again lines of constant  ψ  are streamlines, and the change in  ψ  is the  volume 
fl ow  Q1S2 5 ψ2 2 ψ1. The sign convention is the same as in Fig. 4.9. This type of 
stream function is very useful in analyzing fl ows with cylinders, vortices, sources, 
and sinks (Chap. 8). 
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Incompressible Axisymmetric 
Flow

  As a fi nal example, suppose that the fl ow is three-dimensional ( υ  r ,  υ  z ) but with no 
circumferential variations,  υ  θ     5     ≠ / ≠  θ     5    0 (see Fig. 4.2 for defi nition of coordinates). 
Such a fl ow is termed  axisymmetric,  and the fl ow pattern is the same when viewed 
on any meridional plane through the axis of revolution  z . For incompressible fl ow, 
Eq. (4.82 b ) becomes 

  
1
r
 
0
0r

 (rυr) 1
0
0z

 (υz) 5 0  (4.102)  

 This doesn’t seem to work: Can’t we get rid of the one  r  outside? But when we  realize 
that  r  and  z  are independent coordinates, Eq. (4.102) can be rewritten as 

  
0
0r

 (rυr) 1
0
0z

 (rυz) 5 0  (4.103)  

 By analogy with Eq. (4.84), this has the form 

  
0
0r

 a20ψ
0z
b 1

0
0z

 a 0ψ
0r
b 5 0  (4.104)  

 By comparing (4.103) and (4.104), we deduce the form of an incompressible axisym-
metric stream function  ψ  ( r ,  z ) 

  υr 5 2 
1
r
 
0ψ
0z

    υz 5
1
r
 
0ψ
0r

  (4.105)  

 Here again lines of constant  ψ  are streamlines, but there is a factor (2 π ) in the volume 
fl ow: Q1S2 5 2π(ψ2 2 ψ1). The sign convention on fl ow is the same as in Fig.   4.9. 

  EXAMPLE     4.8  

 Investigate the stream function in polar coordinates 

  ψ 5 U sin θ ar 2
R2

r
b  (1)  

 where  U  and  R  are constants, a velocity and a length, respectively. Plot the streamlines. What 
does the fl ow represent? Is it a realistic solution to the basic equations? 

  Solution  

 The streamlines are lines of constant  ψ , which has units of square meters per second. Note that 
 ψ /( UR ) is dimensionless. Rewrite Eq. (1) in dimensionless form 

  
ψ

UR
5 sin θ aη 2

1

η
b    η 5

r

R
  (2)  

 Of particular interest is the special line  ψ     5    0. From Eq. (1) or (2) this occurs when ( a )  θ     5    0 
or 180 8  and ( b )  r     5     R . Case ( a ) is the  x  axis, and case ( b ) is a circle of radius  R ,   both of which 
are plotted in Fig. E4.8. 
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  For any other nonzero value of  ψ  it is easiest to pick a value of  r  and solve for  θ : 

  sin θ 5
ψ/ (UR)

r/R 2 R/r
  (3)  

 In general, there will be two solutions for  θ  because of the symmetry about the  y  axis. For 
example, take  ψ /( UR )    5     1 1.0: 

  E4.8   

Streamlines converge,
high-velocity region

r = R

0

–1

+1

Singularity
at origin

– 1
2

+ 1
2

= +1
ψ

UR

0
0

0

0

–1

 Guess  r / R  3.0 2.5 2.0 1.8 1.7 1.618 

 Compute  θ  22 8  28 8  42 8  53 8  64 8  90 8  
  158 8  152 8  138 8  127 8  116 8  

 This line is plotted in Fig. E4.8 and passes over the circle  r     5     R . Be careful, though, because 
there is a second curve for  ψ /( UR )    5     1 1.0 for small  r   ,     R  below the  x  axis: 

 Guess  r / R  0.618 0.6 0.5 0.4 0.3 0.2 0.1 

 Compute  θ   2 90 8   2 70 8   2 42 8   2 28 8   2 19 8   2 12 8   2 6 8  
    2 110 8   2 138 8   2 152 8   2 161 8   2 168 8   2 174 8  

 This second curve plots as a closed curve inside the circle  r     5     R . There is a singularity of infi -
nite velocity and indeterminate fl ow direction at the origin. Figure E4.8 shows the full pattern. 
  The given stream function, Eq. (1), is an exact and classic solution to the momentum 
equation (4.38) for frictionless fl ow. Outside the circle  r     5     R  it represents two-dimensional 
inviscid fl ow of a uniform stream past a circular cylinder (Sec. 8.4). Inside the circle it 
represents a rather unrealistic trapped circulating motion of what is called a  line doublet . 

4.8 Vorticity and Irrotationality   The assumption of zero fl uid angular velocity, or irrotationality, is a very useful 
 simplifi cation. Here we show that angular velocity is associated with the curl of the 
local velocity vector. 
  The differential relations for deformation of a fl uid element can be derived by 
examining Fig. 4.10. Two fl uid lines  AB  and  BC , initially perpendicular at time  t , 
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move and deform so that at  t   1     dt  they have slightly different lengths  A  9  B  9  and  B  9  C  9  
and are slightly off the perpendicular by angles  d  α  and  d  β . Such deformation occurs 
kinematically because  A ,  B , and  C  have slightly different velocities when the velocity 
fi eld  V  has spatial gradients. All these differential changes in the motion of  A ,  B , and 
 C  are noted in Fig. 4.10. 
  We defi ne the angular velocity  ω  z  about the  z  axis as the average rate of counter-
clockwise turning of the two lines: 

  ωz 5
1

2
 adα

dt
2

dβ

dt
b  (4.106)  

 But from Fig. 4.10,  d  α  and  d  β  are each directly related to velocity derivatives in the 
limit of small  dt : 

 dα 5 lim
dtS0

 c tan21 
(0υ/0x) dx dt

dx 1 (0u/0x) dx dt
d 5

0υ
0x

 dt 

  dβ 5 lim
dtS0

 c tan21 
(0u/0y) dy dt

dy 1 (0υ/0y) dy dt
d 5

0u
0y

 dt

  (4.107)  

 Combining Eqs. (4.106) and (4.107) gives the desired result: 

  ωz 5
1

2
 a 0υ
0x

2
0u
0y
b  (4.108)  

∂u
∂y

dy dt

d

A'

Time: t + dt
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d
∂  
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Line 2

Time t

V

Line 1

A

B Cd x

dy

y

x
0

∂  

∂y
dy dtdy +

∂u
∂x

dx dtdx +

υ

β

α

υ

 Fig. 4.10    Angular velocity and 
strain rate of two fl uid lines 
deforming in the  xy  plane.
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 In exactly similar manner we determine the other two rates: 

ωx 5
1

2
 a 0w
0y

2
0υ
0z
b    ωy 5

1

2
 a 0u
0z

2
0w
0x
b  (4.109)

 The vector  ω     5     i  ω  x     1     j  ω  y     1     k  ω  z  is thus one-half the curl of the velocity vector 

ω 5
1

2
 (curl V) 5

1

2
 ∞ i j k
0
0x

0
0y

0
0z

u υ w

∞   (4.110)

 Since the factor of 1
2 is annoying, many workers prefer to use a vector twice as large, 

called the  vorticity : 

ζ 5 2ω 5 curl V  (4.111)

  Many fl ows have negligible or zero vorticity and are called  irrotational : 

curl V ; 0  (4.112)

 The next section expands on this idea. Such fl ows can be incompressible or compress-
ible, steady or unsteady. 
  We may also note that Fig. 4.10 demonstrates the  shear strain rate  of the element, 
which is defi ned as the rate of closure of the initially perpendicular lines: 

ε
#
xy 5

dα

dt
1

dβ

dt
5
0υ
0x

1
0u
0y

  (4.113)

 When multiplied by viscosity  μ , this equals the shear stress  τ  xy  in a newtonian fl uid, 
as discussed earlier in Eqs. (4.37). Appendix D lists strain rate and vorticity compo-
nents in cylindrical coordinates. 

4.9 Frictionless Irrotational 
Flows

  When a fl ow is both frictionless and irrotational, pleasant things happen. First, the 
momentum equation (4.38) reduces to Euler’s equation: 

ρ 
dV
dt

5 ρg 2 =p  (4.114)

 Second, there is a great simplifi cation in the acceleration term. Recall from Sec. 4.1 
that acceleration has two terms: 

dV
dt

5
0V
0t

1 (V ? =)V  (4.2)

 A beautiful vector identity exists for the second term [11]: 

(V ? =)V ; =(1
2V

2) 1 ζ 3 V  (4.115)

 where  ζ     5    curl  V  from Eq. (4.111) is the fl uid vorticity. 
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  Now combine (4.114) and (4.115), divide by  ρ , and rearrange on the left-hand side. 
Dot-product the entire equation into an arbitrary vector displacement  d  r : c 0V

0t
1 = a1

2
 V2b 1 ζ 3 V 1

1
ρ

  =p 2 g d ? dr 5 0  (4.116)

 Nothing works right unless we can get rid of the third term. We want 

(ζ 3 V) ? (dr) ; 0  (4.117)

 This will be true under various conditions: 

 1.  V  is zero; trivial, no fl ow (hydrostatics). 

 2.  ζ  is zero; irrotational fl ow. 

 3.  dr    is perpendicular to  ζ     3     V ; this is rather specialized and rare. 

 4.  dr  is parallel to  V ; we integrate  along a streamline  (see Sec. 3.5). 

 Condition 4 is the common assumption. If we integrate along a streamline in friction-
less compressible fl ow and take, for convenience,  g     5     2    g  k , Eq. (4.116) reduces to 

0V
0t

? dr 1 d a1

2
 V2b 1

dp

ρ
1 g dz 5 0  (4.118)

 Except for the fi rst term, these are exact differentials. Integrate between any two points 
1 and 2 along the streamline: 

#
2

1

 
0V
0t

 ds 1 #
2

1

  
dp

ρ
1

1

2
 (V2

2 2 V1
2) 1 g(z2 2 z1) 5 0  (4.119)

 where  ds  is the arc length along the streamline. Equation (4.119) is Bernoulli’s equa-
tion for frictionless unsteady fl ow along a streamline and is identical to Eq. (3.53). 
For incompressible steady fl ow, it reduces to 

p

ρ
1

1

2
 V2 1 gz 5 constant along streamline  (4.120)

 The constant may vary from streamline to streamline unless the fl ow is also irrota-
tional (assumption 2). For irrotational fl ow  ζ     5    0, the offending term Eq. (4.117) 
vanishes regardless of the direction of  d  r , and Eq. (4.120) then holds all over the fl ow 
fi eld with the same constant. 

Velocity Potential   Irrotationality gives rise to a scalar function  ϕ  similar and complementary to the 
stream function  ψ . From a theorem in vector analysis [11], a vector with zero curl 
must be the gradient of a scalar function 

If    = 3 V ; 0    then    V 5 =ϕ  (4.121)

 where  ϕ     5     ϕ  ( x ,  y ,  z ,  t ) is called the  velocity potential function . Knowledge of  ϕ  thus 
immediately gives the velocity components 

u 5
0ϕ
0x

    υ 5
0ϕ
0y

    w 5
0ϕ
0z

  (4.122)

 Lines of constant  ϕ  are called the  potential lines  of the fl ow. 
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4.9  Frictionless Irrotational Flows 257

  Note that  ϕ , unlike the stream function, is fully three-dimensional and is not limited 
to two coordinates. It reduces a velocity problem with three unknowns  u ,  υ , and  w  
to a single unknown potential  ϕ ; many examples are given in Chap. 8. The velocity 
potential also simplifi es the unsteady Bernoulli equation (4.118) because if  ϕ  exists, 
we obtain 

  
0V
0t

? dr 5
0
0t

 (=ϕ) ? dr 5 d a 0ϕ
0t
b  (4.123)  

 along any arbitrary direction. Equation (4.118) then becomes a relation between  ϕ  
and  p : 

  
0ϕ
0t

1 #  
dp

ρ
1

1

2
 0=ϕ 02 1 gz 5 const  (4.124)  

 This is the unsteady irrotational Bernoulli equation. It is very important in the analy-
sis of accelerating fl ow fi elds (see Refs. 10 and 15), but the only application in this 
text will be in Sec. 9.3 for steady fl ow. 

Orthogonality of Streamlines and 
Potential Lines

  If a fl ow is both irrotational and described by only two coordinates,  ψ  and  ϕ  both 
exist, and the streamlines and potential lines are everywhere mutually perpendicular 
except at a stagnation point. For example, for incompressible fl ow in the  xy  plane, 
we would have 

   u 5
0ψ
0y

5
0ϕ
0x

  (4.125)  

  υ 5 2
0ψ
0x

5
0ϕ
0y

  (4.126)  

 Can you tell by inspection not only that these relations imply orthogonality but also 
that  ϕ  and  ψ  satisfy Laplace’s equation? 13  A line of constant  ϕ  would be such that 
the change in  ϕ  is zero: 

  dϕ 5
0ϕ
0x

 dx 1
0ϕ
0y

 dy 5 0 5 u dx 1 υ dy  (4.127)  

 Solving, we have 

  ady

dx
b
ϕ5const

5 2
u

υ
5 2

1

(dy/dx)ψ5const
  (4.128)   

 Equation (4.128) is the mathematical condition that lines of constant  ϕ  and  ψ  be 
mutually orthogonal. It may not be true at a stagnation point, where both  u  and  υ  are 
zero, so their ratio in Eq. (4.128) is indeterminate. 

 13 Equations (4.125) and (4.126) are called the  Cauchy-Riemann     equations  and are studied in 
 complex variable theory.
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Generation of Rotationality14   This is the second time we have discussed Bernoulli’s equation under different 
 circumstances (the fi rst was in Sec. 3.5). Such reinforcement is useful, since this is 
probably the most widely used equation in fl uid mechanics. It requires frictionless 
fl ow with no shaft work or heat transfer between sections 1 and 2. The fl ow may or 
may not be irrotational, the former being an easier condition, allowing a universal 
Bernoulli constant.  
  The only remaining question is this:  When  is a fl ow irrotational? In other words, 
when does a fl ow have negligible angular velocity? The exact analysis of fl uid rota-
tionality under arbitrary conditions is a topic for advanced study (for example, Ref. 10, 
Sec. 8.5; Ref. 9, Sec. 5.2; and Ref. 5, Sec. 2.10). We shall simply state those results 
here without proof. 
  A fl uid fl ow that is initially irrotational may become rotational if 

 1. There are signifi cant viscous forces induced by jets, wakes, or solid boundaries. 
In this case Bernoulli’s equation will not be valid in such viscous regions. 

 2. There are entropy gradients caused by curved shock waves (see Fig. 4.11 b ). 

 3. There are density gradients caused by  stratifi cation  (uneven heating) rather than 
by pressure gradients. 

 4. There are signifi cant  noninertial  effects such as the earth’s rotation (the 
 Coriolis acceleration). 

 In cases 2 to 4, Bernoulli’s equation still holds along a streamline if friction is  negligible. 
We shall not study cases 3 and 4 in this book. Case 2 will be treated briefl y in Chap. 9 
on gas dynamics. Primarily we are concerned with case 1, where rotation is induced 
by viscous stresses. This occurs near solid surfaces, where the no-slip condition creates 
a boundary layer through which the stream velocity drops to zero, and in jets and 
wakes, where streams of different velocities meet in a region of high shear. 
  Internal fl ows, such as pipes and ducts, are mostly viscous, and the wall layers 
grow to meet in the core of the duct. Bernoulli’s equation does not hold in such fl ows 
unless it is modifi ed for viscous losses. 
  External fl ows, such as a body immersed in a stream, are partly viscous and partly 
inviscid, the two regions being patched together at the edge of the shear layer or 
boundary layer. Two examples are shown in Fig. 4.11. Figure 4.11 a  shows a low-
speed subsonic fl ow past a body. The approach stream is irrotational; that is, the curl 
of a constant is zero, but viscous stresses create a rotational shear layer beside and 
downstream of the body. Generally speaking (see Chap. 7), the shear layer is laminar, 
or smooth, near the front of the body and turbulent, or disorderly, toward the rear. 
A separated, or deadwater, region usually occurs near the trailing edge, followed by an 
unsteady turbulent wake extending far downstream. Some sort of laminar or turbulent 
viscous theory must be applied to these viscous regions; they are then patched onto 
the outer fl ow, which is frictionless and irrotational. If the stream Mach number is 
less than about 0.3, we can combine Eq. (4.122) with the incompressible continuity 
equation (4.73): 

 = ? V 5 = ? (=ϕ) 5 0 

 14 This section may be omitted without loss of continuity.
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 or §2ϕ 5 0 5
02ϕ

0x2 1
02ϕ

0y2 1
02ϕ

0z2   (4.129)

 This is Laplace’s equation in three dimensions, there being no restraint on the number 
of coordinates in potential fl ow. A great deal of Chap. 8 will be concerned with solv-
ing Eq. (4.129) for practical engineering problems; it holds in the entire region of 
Fig. 4.11 a  outside the shear layer. 
  Figure 4.11 b  shows a supersonic fl ow past a round-nosed body. A curved shock 
wave generally forms in front, and the fl ow downstream is  rotational  due to entropy 
gradients (case 2). We can use Euler’s equation (4.114) in this frictionless region but 
not potential theory. The shear layers have the same general character as in Fig. 4.11 a
except that the separation zone is slight or often absent and the wake is usually thin-
ner. Theory of separated fl ow is presently qualitative, but we can make quantitative 
estimates of laminar and turbulent boundary layers and wakes. 

(a)

(b)

Curved shock wave introduces rotationality

Viscous regions where Bernoulli is invalid:

Laminar
boundary

layer

Turbulent
boundary

layer
Slight

separated
flow

Wake
flow

Viscous regions where Bernoulli's equation fails:

Laminar
boundary

layer

Turbulent
boundary

layer Separated
flow

Wake
flow

U

Uniform
approach

flow
(irrotational)

Uniform
supersonic
approach

(irrotational)

U
Fig. 4.11  Typical fl ow patterns 
illustrating viscous regions patched 
onto nearly frictionless regions: 
( a ) low subsonic fl ow past a body 
( U     !   a ); frictionless, irrotational 
potential fl ow outside the boundary 
layer (Bernoulli and Laplace 
equations valid); ( b ) supersonic fl ow 
past a body ( U     .     a ); frictionless, 
rotational fl ow outside the boundary 
layer (Bernoulli equation valid, 
potential fl ow invalid).



260 Chapter 4 Differential Relations for Fluid Flow 

  EXAMPLE 4.9  

 If a velocity potential exists for the velocity fi eld of Example 4.5 

  u 5 a(x2 2 y2)    υ 5 22axy   w 5 0 

 fi nd it, plot it, and compare with Example 4.7. 

  Solution  

 Since  w     5    0, the curl of  V  has only one  z  component, and we must show that it is zero: 

 (= 3 V)z 5 2ωz 5
0υ
0x

2
0u
0y

5
0
0x

 (22axy) 2
0
0y

 (ax2 2 ay2) 

    5 22ay 1 2ay 5 0    checks   Ans.  

 The fl ow is indeed irrotational. A velocity potential exists. 
  To fi nd  ϕ  ( x ,  y ), set 

  u 5
0ϕ
0x

5 ax2 2 ay2  (1)  

  υ 5
0ϕ
0y

5 22axy  (2)  

 Integrate (1) 

  ϕ 5
ax3

3
2 axy2 1 f(y)  (3)  

 Differentiate (3) and compare with (2) 

  
0ϕ
0y

5 22axy 1 f ¿ (y) 5 22axy  (4)  

 Therefore  f   9     5    0, or   f     5    constant. The velocity potential is 

  ϕ 5
ax3

3
2 axy2 1 C  Ans.  

  E4.9   

2a

a

0

–a

  ϕ = –2a

y

   ϕ = –2a

–a

0

a

2a

x

a 0 –a –2a   ϕ = 2a
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 Letting  C     5    0, we can plot the  ϕ  lines in the same fashion as in Example 4.7. The result is 
shown in Fig. E4.9 (no arrows on  ϕ ). For this particular problem, the  ϕ  lines form the same 
pattern as the  ψ  lines of Example 4.7 (which are shown here as dashed lines) but are displaced 
30 8 . The  ϕ  and  ψ  lines are everywhere perpendicular except at the origin, a stagnation point, 
where they are 30 8  apart. We expected trouble at the stagnation point, and there is no general 
rule for determining the behavior of the lines at that point. 

4.10 Some Illustrative 
Incompressible Viscous Flows

  Inviscid fl ows do  not  satisfy the no-slip condition. They “slip” at the wall but do not 
fl ow through the wall. To look at fully viscous no-slip conditions, we must attack the 
complete Navier-Stokes equation (4.74), and the result is usually not at all irrotational, 
nor does a velocity potential exist. We look here at three cases: (1) fl ow between 
parallel plates due to a moving upper wall, (2) fl ow between parallel plates due to 
pressure gradient, and (3) fl ow between concentric cylinders when the inner one 
rotates. Other cases will be given as problem assignments or considered in Chap. 6. 
Extensive solutions for viscous fl ows are discussed in Refs. 4 and 5. All fl ows in this 
section are viscous and rotational. 

Couette Flow between a Fixed 
and a Moving Plate

  Consider two-dimensional incompressible plane ( ∂ / ∂  z     5    0) viscous fl ow between 
parallel plates a distance 2 h  apart, as shown in Fig. 4.12. We assume that the plates 
are very wide and very long, so the fl ow is essentially axial,  u     fi    0 but  υ     5     w   5  0. 
The present case is Fig. 4.12 a , where the upper plate moves at velocity  V  but there 
is no pressure gradient. Neglect gravity effects. We learn from the continuity equation 
(4.73) that 

 
0u
0x

1
0υ
0y

1
0w
0z

5 0 5
0u
0x

1 0 1 0    or    u 5 u(y) only 

 Thus there is a single nonzero axial velocity component that varies only across the 
channel. The fl ow is said to be  fully developed  (far downstream of the entrance).   

y = +h
V

y

x
u(y)

y = –h
Fixed

(a)

Fixed

(b)

u(y)

Fixed

umax

 Fig. 4.12    Incompressible viscous 
fl ow between parallel plates: ( a ) no 
pressure gradient, upper plate 
moving; ( b ) pressure gradient ∂ p /∂ x  
with both plates fi xed.
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Substitute  u     5     u ( y ) into the  x  component of the Navier-Stokes momentum equa-
tion (4.74) for two-dimensional ( x ,  y ) fl ow: 

 ρau 

0u
0x

1 υ 

0u
0y
b 5 2

0p
0x

1 ρgx 1 μ a 02u

0x2 1
02u

0y2b 
 or ρ(0 1 0) 5 0 1 0 1 μa0 1

d2u

dy2b  (4.130)  

 Most of the terms drop out, and the momentum equation reduces to simply 

 
d2u

dy2 5 0    or    u 5 C1y 1 C2 

 The two constants are found by applying the no-slip condition at the upper and lower 
plates: 

 At y 5 1h:  u 5 V 5 C1h 1 C2  

 At y 5 2h:  u 5 0 5 C1(2h) 1 C2 

 or C1 5
V

2h
    and    C2 5

V

2
 

 Therefore the solution for this case ( a ), fl ow between plates with a moving upper 
wall, is 

  u 5
V

2h
 y 1

V

2
    2h # y # 1h  (4.131)  

 This is  Couette fl ow  due to a moving wall: a linear velocity profi le with no slip at 
each wall, as anticipated and sketched in Fig. 4.12 a . Note that the origin has been 
placed in the center of the channel for convenience in case ( b ) which follows. 
  What we have just presented is a rigorous derivation of the more informally 
 discussed fl ow of Fig. 1.7 (where  y  and  h  were defi ned differently). 

Flow Due to Pressure Gradient 
between Two Fixed Plates

  Case ( b ) is sketched in Fig. 4.12 b . Both plates are fi xed ( V     5    0), but the pressure 
varies in the  x  direction. If  υ     5     w     5    0, the continuity equation leads to the same 
conclusion as case ( a )—namely, that  u     5     u ( y ) only. The  x -momentum equation (4.130) 
changes only because the pressure is variable: 

  μ
d2u

dy2 5
0p
0x

  (4.132)  

 Also, since  υ     5     w     5    0 and gravity is neglected, the  y - and  z -momentum equations 
lead to 

 
0p
0y

5 0  and  
0p
0z

5 0  or  p 5 p(x) only 

 Thus the pressure gradient in Eq. (4.132) is the total and only gradient: 

  μ 
d2u

dy2 5
dp

dx
5 const , 0  (4.133)  
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 Why did we add the fact that  dp / dx  is  constant ? Recall a useful conclusion from the 
theory of separation of variables: If two quantities are equal and one varies only with 
 y  and the other varies only with  x , then they must both equal the same constant. 
Otherwise they would not be independent of each other. 
  Why did we state that the constant is  negative ? Physically, the pressure must 
decrease in the fl ow direction in order to drive the fl ow against resisting wall shear 
stress. Thus the velocity profi le  u ( y ) must have negative curvature everywhere, as 
anticipated and sketched in Fig. 4.12 b . 
  The solution to Eq. (4.133) is accomplished by double integration: 

 u 5
1
μ

 
dp

dx
 
y2

2
1 C1y 1 C2 

 The constants are found from the no-slip condition at each wall: 

 At y 5 6h :  u 5 0    or    C1 5 0    and    C2 5 2
dp

dx
 
h2

2μ
 

 Thus the solution to case ( b ), fl ow in a channel due to pressure gradient, is 

  u 5 2
dp

dx
 
h2

2μ
 a1 2

y2

h2b  (4.134)  

 The fl ow forms a  Poiseuille  parabola of constant negative curvature. The maximum 
velocity occurs at the centerline  y     5    0: 

  umax 5 2
dp

dx
 
h2

2μ
  (4.135)  

 Other (laminar) fl ow parameters are computed in the following example. 

  EXAMPLE 4.10  

 For case ( b ) in Fig. 4.12 b , fl ow between parallel plates due to the pressure gradient, compute 
( a ) the wall shear stress, ( b ) the stream function, ( c ) the vorticity, ( d  ) the velocity potential, 
and ( e ) the average velocity. 

  Solution  

 All parameters can be computed from the basic solution, Eq. (4.134), by mathematical 
 manipulation. 

 Part (a)   The wall shear follows from the defi nition of a newtonian fl uid, Eq. (4.37): 

  τw 5 τxy wall 5 μ a 0u0y 1
0υ
0x
b `

y 5 6h
5 μ

0
0y
c a2dp

dx
b a h2

2μ
b a1 2

y2

h2b d `
y5 6h

 

   5 6
dp

dx
 h 5 7

2μumax

h
  Ans. (a)  

 The wall shear has the same magnitude at each wall, but by our sign convention of Fig. 4.3, 
the upper wall has negative shear stress. 
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  Part (b)  Since the fl ow is plane, steady, and incompressible, a stream function exists: 

 u 5
0ψ
0y

5 umaxa1 2
y2

h2b    υ 5 2
0ψ
0x

5 0 

 Integrating and setting  ψ     5    0 at the centerline for convenience, we obtain 

  ψ 5 umaxay 2
y3

3h2b  Ans. (b)  

 At the walls,  y     5     6  h  and  ψ   5     6 2 u  max  h /3, respectively. 

  Part (c)  In plane fl ow, there is only a single nonzero vorticity component: 

  ζz 5 (curl V)z 5
0υ
0x

2
0u
0y

5
2umax

h2
 y  Ans. (c)  

 The vorticity is highest at the wall and is positive (counterclockwise) in the upper half and 
negative (clockwise) in the lower half of the fl uid. Viscous fl ows are typically full of vorticity 
and are not at all irrotational. 

  Part (d)  From part ( c ), the vorticity is fi nite. Therefore the fl ow is not irrotational, and the velocity 
potential  does not exist .  Ans.     (d )  

  Part (e)  The average velocity is defi ned as  V  av     5     Q / A , where Q 5 eu dA over the cross section. For 
our particular distribution  u ( y ) from Eq. (4.134), we obtain 

  Vav 5
1

A #u dA 5
1

b(2h) #
1h

2h

umaxa1 2
y2

h2b b dy 5
2

3
 umax  Ans. (e)  

 In plane Poiseuille fl ow between parallel plates, the average velocity is two-thirds of the maxi-
mum (or centerline) value. This result could also have been obtained from the stream function 
derived in part ( b ). From Eq. (4.95), 

 Qchannel 5 ψupper 2 ψlower 5
2umaxh

3
2 a22umaxh

3
b 5

4

3
 umaxh per unit width 

 whence  V  av     5     Q / A  b  5  1     5    (4 u  max  h /3)/(2 h )    5    2 u  max /3, the same result. 
  This example illustrates a statement made earlier: Knowledge of the velocity vector  V  
[as in Eq. (4.134)] is essentially the  solution  to a fl uid mechanics problem, since all other 
fl ow properties can then be calculated. 

Fully Developed Laminar 
Pipe Flow

  Perhaps the most useful exact solution of the Navier-Stokes equation is for incom-
pressible fl ow in a straight circular pipe of radius  R , fi rst studied experimentally by 
G. Hagen in 1839 and J. L. Poiseuille in 1840. By  fully developed  we mean that the 
region studied is far enough from the entrance that the fl ow is purely axial,  υ  z     fi    0, 
while  υ  r  and  υ  θ  are zero. We neglect gravity and also assume axial symmetry—that 
is,  ∂ / ∂  θ     5    0. The equation of continuity in cylindrical coordinates, Eq. (4.12 b ), 
reduces to 

 
0
0z

 (υz) 5 0    or    υz 5 υz(r)    only 
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 The fl ow proceeds straight down the pipe without radial motion. The  r -momentum 
equation in cylindrical coordinates, Eq. (D.5), simplifi es to  ∂  p /∂   r     5    0, or  p     5     p ( z ) 
only. The  z -momentum equation in cylindrical coordinates, Eq. (D.7), reduces to 

 ρυz

0υz

0z
 52

dp

dz
1 μ§2υz 5 2

dp

dz
1
μ

r
 
d

dr
 ar 

dυz

dr
b 

 The convective acceleration term on the left vanishes because of the previously given 
continuity equation. Thus the momentum equation may be rearranged as follows: 

  
μ

r
 
d

dr
 ar 

dυz

dr
b 5

dp

dz
5 const , 0  (4.136)  

 This is exactly the situation that occurred for fl ow between fl at plates in Eq. (4.132). 
Again the “separation” constant is negative, and pipe fl ow will look much like the 
plate fl ow in Fig. 4.12 b . 
  Equation (4.136) is linear and may be integrated twice, with the result 

 υz 5
dp

dz
 
r2

4μ
1 C1 ln(r) 1 C2 

 where  C  1  and  C  2  are constants. The boundary conditions are no slip at the wall and 
fi nite velocity at the centerline: 

 No slip at r 5 R: υz 5 0 5
dp

dz
 
R2

4μ
1 C1 ln(R) 1 C2 

 Finite velocity at r 5 0: υz 5 finite 5 0 1 C1 ln(0) 1 C2 

 To avoid a logarithmic singularity, the centerline condition requires that  C  1     5    0. Then, 
from no slip,  C  2     5    ( 2  dp / dz )( R  2 /4 μ ). The fi nal, and famous, solution for fully devel-
oped  Hagen-Poiseuille fl ow  is 

  υz 5 a2dp

dz
b 1

4μ
 (R2 2 r2)   (4.137)  

 The velocity profi le is a paraboloid with a maximum at the centerline. Just as in 
Example 4.10, knowledge of the velocity distribution enables other parameters to be 
calculated: 

 Vmax 5 υz(r 5 0) 5 a2dp

dz
b R2

4μ
 

 Vavg 5
1

A #υz dA 5
1

πR2 #
R

0

Vmax a12
r2

R2b 2πr dr 5
Vmax

2
5 a2dp

dz
b R2

8μ
 

 Q 5 #υz dA 5 #
R

0

Vmax a12
r2

R2b 2πr dr 5 πR2Vavg 5
πR4

8μ
 a2dp

dz
b 5

πR4¢p

8μ L
 

  τwall 5 μ ` 0υz

0r
`
r5R

5
4μVavg

R
5

R

2
 a2dp

dz
b 5

R

2
 
¢p

L
  (4.138)  
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 Note that we have substituted the equality (2dp/dz) 5 Dp/L, where Δp is the pressure 
drop along the entire length  L  of the pipe. 
  These formulas are valid as long as the fl ow is  laminar —that is, when the dimen-
sionless Reynolds number of the fl ow, Re D     5     ρ  V  avg (2 R )/ μ , is less than about 2100. 
Note also that the formulas do not depend on density, the reason being that the con-
vective acceleration of this fl ow is zero. 

  EXAMPLE 4.11  

 SAE 10W oil at 20 8 C fl ows at 1.1 m 3 /h through a horizontal pipe with  d     5    2 cm and  L     5   
 12 m. Find ( a ) the average velocity, ( b ) the Reynolds number, ( c ) the pressure drop, and 
( d  ) the power required. 

  Solution  

  •   Assumptions:  Laminar, steady, Hagen-Poiseuille pipe fl ow. 
  •   Approach:  The formulas of Eqs. (4.138) are appropriate for this problem. Note that  R     5   

 0.01 m. 
  •   Property values:  From Table A.3 for SAE 10W oil,  ρ     5    870 kg/m 3  and  μ     5    0.104 kg/(m-s). 
  •   Solution steps:  The average velocity follows easily from the fl ow rate and the pipe area: 

  Vavg 5
Q

πR2 5
(1.1/3600) m3/s

π(0.01 m)2 5 0.973 
m

s
  Ans. (a)  

 We had to convert  Q  to m 3 /s. The (diameter) Reynolds number follows from the average 
velocity: 

     Red 5
ρVavgd

μ
5

(870 kg/m3)(0.973 m/s)(0.02 m)

0.104 kg/(m-s)
5 163     Ans. (b)  

 This is less than the “transition” value of 2100; so the fl ow is indeed  laminar , and the 
 formulas are valid. The pressure drop is computed from the third of Eqs. (4.138): 

 Q 5
1.1

3600
 
m3

s
5
πR4¢p

8μ L
5

π(0.01 m)4¢p

8(0.104 kg/(m-s))(12 m)
 solve for ¢p 5 97,100 Pa    Ans. (c)  

 When using SI units, the answer returns in pascals; no conversion factors are needed.  Finally, 
the power required is the product of fl ow rate and pressure drop: 

    Power 5 Q¢p 5 a 1.1

3600
  m3/sb (97,100 N/m2) 5 29.7 

N-m

s
5 29.7 W    Ans. (d )  

  •   Comments:  Pipe fl ow problems are straightforward algebraic exercises if the data are 
compatible. Note again that SI units can be used in the formulas without conversion 
 factors. 

Flow between Long Concentric 
Cylinders

  Consider a fl uid of constant ( ρ ,  μ ) between two concentric cylinders, as in Fig. 4.13. 
There is no axial motion or end effect  υ  z     5     ∂ / ∂  z     5    0. Let the inner cylinder rotate 
at angular velocity  V  i . Let the outer cylinder be fi xed. There is circular symmetry, so 
the velocity does not vary with  θ  and varies only with  r . 
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  The continuity equation for this problem is Eq. (4.12 b ) with  υ  z     5    0: 

 
1
r
 
0
0r

 (rυr) 1
1
r
 
0υθ
0θ

5 0 5
1
r
 
d

dr
 (rυr)  or  rυr 5 const 

 Note that  υ  θ  does not vary with  θ . Since  υ  r   5  0 at both the inner and outer cylinders, 
it follows that  υ  r   5  0 everywhere and the motion can only be purely circumferential, 
 υ  θ   5   υ  θ ( r ). The  θ -momentum equation (D.6) becomes 

 ρ(V ? =)υθ 1
ρυrυθ

r
5 2

1
r

 
0p
0θ

1 ρgθ 1 μ a§ 2υθ 2
υθ

r2 b 
 For the conditions of the present problem, all terms are zero except the last. Therefore, 
the basic differential equation for fl ow between rotating cylinders is 

  §2υθ 5
1
r
 
d

dr
 ar 

dυθ
dr
b 5

υθ

r2   (4.139)  

 This is a linear second-order ordinary differential equation with the solution 

 υθ 5 C1r 1
C2

r
 

 The constants are found by the no-slip condition at the inner and outer cylinders: 

 Outer, at r 5 ro: υθ 5 0 5 C1ro 1
C2

ro
 

 Inner, at r 5 ri : υθ 5 Viri 5 C1ri 1
C2

ri
 

 The fi nal solution for the velocity distribution is 

 Rotating inner cylinder: υθ 5 Æi ri  
ro /r 2 r/ro

ro /ri 2 ri /ro
  (4.140)  

 The velocity profi le closely resembles the sketch in Fig. 4.13. Variations of this case, 
such as a rotating outer cylinder, are given in the problem assignments. 

Fixed

Ωi

ro

v

r
ri

Fluid:   ,

θ

ρ μ

 Fig. 4.13    Coordinate system for 
incompressible viscous fl ow 
between a fi xed outer cylinder and 
a steadily rotating inner cylinder.
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Instability of Rotating Inner15 

Cylinder Flow
  The classic  Couette fl ow  solution 16  of Eq. (4.140) describes a physically satisfying 

concave, two-dimensional, laminar fl ow velocity profi le as in Fig. 4.13. The solution 
is mathematically exact for an incompressible fl uid. However, it becomes unstable at 
a relatively low rate of rotation of the inner cylinder, as shown in 1923 in a classic 
paper by G. I. Taylor [17]. At a critical value of what is now called the dimensionless 
 Taylor number,  denoted Ta, 

  Tacrit 5
ri(ro 2 ri)

3Vi
2

ν 2 < 1700  (4.141)    

 the plane fl ow of Fig. 4.13 vanishes and is replaced by a laminar  three-dimensional  
fl ow pattern consisting of rows of nearly square alternating toroidal vortices. 

 15 This section may be omitted without loss of continuity.
 16 Named after M. Couette, whose pioneering paper in 1890 established rotating cylinders as a 

method, still used today, for measuring the viscosity of fl uids.

(a)

(b)

 Fig. 4.14    Experimental verifi cation 
of the instability of fl ow between a 
fi xed outer and a rotating inner 
cylinder. ( a ) Toroidal Taylor 
vortices exist at 1.16 times the 
critical speed; ( b ) at 8.5 times the 
critical speed, the vortices are 
doubly periodic. ( Courtesy of 
Cambridge University Press—
E.L. Koschmieder, “Turbulent 
Taylor Vortex Flow,” Journal of 
Fluid Mechanics, vol. 93. pt. 3, 
1979, pp. 515–527. ) This instability 
does not occur if only the outer 
cylinder rotates.
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  Problems  

 Most of the problems herein are fairly straightforward. More 
diffi cult or open-ended assignments are labeled with an asterisk. 
Problems labeled with a computer icon  may require the use 
of a computer. The standard end-of-chapter problems P4.1 to 
P4.99 (categorized in the problem list here) are followed by 
word problems W4.1 to W4.10, fundamentals of engineering 
exam problems FE4.1 to FE4.6, and comprehensive problems 
C4.1 and C4.2. 

  Problem Distribution  

   Section   Topic   Problems  

  4.1 The acceleration of a fl uid    P4.1–P4.8 
  4.2 The continuity equation    P4.9–P4.25 
  4.3 Linear momentum: Navier-Stokes P4.26–P4.38 
  4.4 Angular momentum: couple stresses P4.39 
  4.5  The differential energy equation  P4.40–P4.41 

  4.6 Boundary conditions P4.42–P4.46 
  4.7 Stream function P4.47–P4.55 
  4.8 and 4.9 Velocity potential, vorticity P4.56–P4.67 
  4.7 and 4.9 Stream function and velocity potential P4.68–P4.78 
  4.10 Incompressible viscous fl ows P4.79–P4.96 
  4.10 Slip fl ows P4.97–P4.99 

  The acceleration of a fl uid  

   P4.1  An idealized velocity fi eld is given by the formula 

  V 5 4txi 2 2t 
2yj 1 4xzk 

 Is this fl ow fi eld steady or unsteady? Is it two- or three- 
dimensional? At the point ( x ,  y ,  z )    5    ( 2 1, 1, 0), compute 
( a ) the acceleration vector and ( b ) any unit vector normal to 
the acceleration. 

An   experimental demonstration of toroidal “Taylor vortices” is shown in Fig. 4.14 a , 
measured at Ta    <  1.16 Ta crit  by Koschmieder [18]. At higher Taylor numbers, the 
vortices also develop a circumferential periodicity but are still laminar, as illustrated 
in Fig. 4.14 b . At still higher Ta, turbulence ensues. This interesting instability reminds 
us that the Navier-Stokes equations, being nonlinear, do admit to multiple (nonunique) 
laminar solutions in addition to the usual instabilities associated with turbulence and 
chaotic dynamic systems. 

 Summary      This chapter complements Chap. 3 by using an infi nitesimal control volume to derive 
the basic partial differential equations of mass, momentum, and energy for a fl uid. 
These equations, together with thermodynamic state relations for the fl uid and appro-
priate boundary conditions, in principle can be solved for the complete fl ow fi eld in 
any given fl uid mechanics problem. Except for Chap. 9, in most of the problems to 
be studied here an incompressible fl uid with constant viscosity is assumed. 
  In addition to deriving the basic equations of mass, momentum, and energy, this 
chapter introduced some supplementary ideas—the stream function, vorticity, irrota-
tionality, and the velocity potential—which will be useful in coming chapters, espe-
cially Chap. 8. Temperature and density variations will be neglected except in Chap. 9, 
where compressibility is studied. 
  This chapter ended by discussing a few classic solutions for laminar viscous fl ows 
(Couette fl ow due to moving walls, Poiseuille duct fl ow due to pressure gradient, and 
fl ow between rotating cylinders). Whole books [4, 5, 9–11, 15] discuss classic 
approaches to fl uid mechanics, and other texts [6, 12–14] extend these studies to the 
realm of continuum mechanics. This does not mean that all problems can be solved 
analytically. The new fi eld of computational fl uid dynamics [1] shows great promise 
of achieving approximate solutions to a wide variety of fl ow problems. In addition, 
when the geometry and boundary conditions are truly complex, experimentation 
(Chap. 5) is a preferred alternative. 



270 Chapter 4 Differential Relations for Fluid Flow 

   P4.2  Flow through the converging nozzle in Fig. P4.2 
can  be    approximated by the one-dimensional velocity 
 distribution 

 u < V0 a1 1
2x

L
b  υ < 0  w < 0 

   ( a ) Find a general expression for the fl uid acceleration in 
the nozzle. ( b ) For the specifi c case  V  0     5    10 ft/s and  L     5    6  
 in, compute the acceleration, in  g ’s, at the entrance and at 
the exit. 

   P4.2   

V0
u = 3V0

x = L
x

x = 0

   P4.3  A two-dimensional velocity fi eld is given by 

 V 5 (x2 2 y2 1 x)i 2 (2xy 1 y)j 

 in arbitrary units. At ( x ,  y )    5    (1, 2), compute ( a ) the 
 accelerations  a  x  and  a  y , ( b ) the velocity component in   the 
direction  θ     5    40 8 , ( c ) the direction of maximum   velocity, 
and ( d  ) the direction of maximum acceleration. 

   P4.4  A simple fl ow model for a two-dimensional converging 
nozzle is the distribution 

  u 5 U0 a1 1
x

L
b  v 5 2U0

y

L
  w 5 0 

   ( a ) Sketch a few streamlines in the region 0  ,   x/L   , 1 and 
0  ,   y/L   ,  1, using the method of Sec. 1.11. ( b ) Find 
 expressions for the horizontal and vertical accelerations. 
( c ) Where is the largest resultant acceleration and its 
 numerical value? 

   P4.5  The velocity fi eld near a stagnation point may be written in 
the form 

  u 5
U0 x

L
  υ 5 2

U0 y

L
  U0 and L are constants 

   ( a ) Show that the acceleration vector is purely radial. 
( b )   For the particular case  L     5    1.5 m, if the acceleration at 
( x ,  y )    5    (1 m, 1 m) is 25 m/s 2 , what is the value of  U  0 ? 

   P4.6  In deriving the continuity equation, we assumed, for sim-
plicity, that the mass fl ow per unit area on the left face was 
just  ρ  u . In fact,  ρ  u  varies also with  y  and  z , and thus it must 
be different on the four corners of the left face. Account for 
these variations, average the four corners, and determine 
how this might change the inlet mass fl ow from  ρ  u dy dz . 

   P4.7  Consider a sphere of radius  R  immersed in a uniform 
stream  U  0 , as shown in Fig. P4.7. According to the theory 
of Chap. 8, the fl uid velocity along streamline  AB  is 
given by 

 V 5 ui 5 U0 a1 1
R3

x3 b i 

   Find ( a ) the position of maximum fl uid acceleration along 
 AB  and ( b ) the time required for a fl uid particle to travel 
from  A  to  B . 

     P4.7   

U0

A

x = –4R

B

y

x
Sphere

R

   P4.8  When a valve is opened, fl uid fl ows in the expansion duct 
of Fig. P4.8 according to the approximation 

  V 5 iU a1 2
x

2L
b tanh 

Ut

L
 

 Find ( a ) the fl uid acceleration at ( x ,  t )    5    ( L ,  L / U ) and 
( b ) the time for which the fl uid acceleration at  x     5     L  is zero. 
Why does the fl uid acceleration become negative after 
 condition ( b )? 

   P4.8   x = 0 x = L

u (x, t)

  The continuity equation  

   P4.9  An idealized incompressible fl ow has the proposed three-
dimensional velocity distribution 

  V 5 4xy2i 1 f (y)j 2 zy2k 
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 Find the appropriate form of the function  f (  y ) that satisfi es 
the continuity relation. 

   P4.10  A two-dimensional, incompressible fl ow has the velocity 
components  u   5  4 y  and  v   5  2 x . ( a ) Find the acceleration 
components. ( b ) Is the vector acceleration radial? ( c ) Sketch 
a few streamlines in the fi rst quadrant and determine if any 
are straight lines. 

   P4.11  Derive Eq. (4.12 b ) for cylindrical coordinates by consider-
ing the fl ux of an incompressible fl uid in and out of the 
 elemental control volume in Fig. 4.2. 

   P4.12  Spherical polar coordinates ( r ,  θ ,  ϕ ) are defi ned in 
Fig.   P4.12. The cartesian transformations are 

  x 5 r sin θ cos ϕ 

  y 5 r sin θ sin ϕ  

  z 5 r cos θ  

 Do not show that the cartesian incompressible continuity 
relation [Eq. (4.12 a )] can be transformed to the spherical 
polar form 

 
1

r2 
0
0r

 (r2υr) 1
1

r sin θ
 
0
0θ

(υθ sin θ) 1
1

r sin θ
 
0
0ϕ

(υϕ) 5 0 

 What is the most general form of  υ  r  when the fl ow is purely 
radial—that is,  υ  θ  and  υ  ϕ  are zero? 

   P4.13  For an incompressible plane fl ow in polar coordinates, we 
are given 

    υr 5 r3 cos θ 1 r2 sin θ 

 Find the appropriate form of circumferential velocity for 
which continuity is satisfi ed. 

   P4.12   

y

x

z

P

θ

ϕ

υθ

r = constant

υϕ

r

υr

   P4.14  For incompressible polar coordinate fl ow, what is the most 
general form of a purely circulatory motion,  υ  θ     5     υ  θ ( r ,  θ ,  t ) 
and  υ  r     5    0, that satisfi es continuity? 

   P4.15  What is the most general form of a purely radial polar 
 coordinate incompressible fl ow pattern,  υ  r     5     υ  r ( r ,  θ ,  t ) and 
 υ  θ     5    0, that satisfi es continuity? 

   P4.16  Consider the plane polar coordinate velocity distribution 

  vr 5
C

r
    vθ 5

K

r
    vz 5 0 

 where  C  and  K  are constants. ( a ) Determine if the equation 
of continuity is satisfi ed. ( b ) By sketching some velocity 
vector directions, plot a single streamline for  C     5   K . What 
might this fl ow fi eld simulate? 

   P4.17  An excellent approximation for the two-dimensional 
 incompressible laminar boundary layer on the fl at surface 
in Fig. P4.17 is 

  u < U a2 
y

δ
2 2 

y3

δ3 1
y4

δ4b  for y # δ  

 where δ 5 Cx1/2, C 5 const 

   ( a ) Assuming a no-slip condition at the wall, fi nd an  expression 
for the velocity component  υ  ( x ,  y ) for  y   #     δ . ( b ) Then fi nd the 
maximum value of  υ  at the station  x     5    1 m, for the particular 
case of airfl ow, when  U     5    3   m/s and  δ     5    1.1 cm. 

   P4.17   

U
y

x

u (x, y)

U

Layer thickness    (x)

0

U = constant

δ

u (x, y)

   P4.18  A piston compresses gas in a cylinder by moving at con-
stant speed  V , as in Fig. P4.18. Let the gas density and  
 length at  t     5    0 be  ρ  0  and  L  0 , respectively. Let the gas veloc-
ity vary linearly from  u     5     V  at the piston face to  u     5    0 at 
 x      5     L . If the gas density varies only with time, fi nd an 
 expression for  ρ ( t ). 

   P4.18   x = 0 x = L (t)
x

 (t)
u (x, t)

ρ
V = constant
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   P4.19  A proposed incompressible plane fl ow in polar coordinates 
is given by 

 vr 5 2r cos(2θ);  vθ 5 22r sin(2θ) 

   (a) Determine if this fl ow satisfi es the equation of continuity. 
( b ) If so, sketch a possible streamline in the fi rst quadrant 
by fi nding the velocity vectors at ( r,   θ )  5  (1.25, 20 8 ), (1.0, 
45 8 ), and (1.25, 70 8 ). ( c ) Speculate on what this fl ow might 
represent. 

   P4.20  A two-dimensional incompressible velocity fi eld has  u     5   
  K (1    2     e  2  ay ), for  x   #   L  and 0  #   y   #     ̀  . What is the most 
general form of  υ ( x ,  y ) for which continuity is satisfi ed 
and  υ     5     υ  0  at  y     5    0? What are the proper dimensions for 
constants  K  and  a ? 

   P4.21  Air fl ows under steady, approximately one-dimensional 
conditions through the conical nozzle in Fig. P4.21. If the 
speed of sound is approximately 340 m/s, what is the mini-
mum nozzle-diameter ratio  D  e / D  0  for which we can safely 
neglect compressibility effects if  V  0     5    ( a ) 10   m/s and 
( b ) 30 m/s? 

   P4.21   D0

De

V0 Ve

   P4.22  In an  axisymmetric  fl ow, nothing varies with  θ , and the 
only nonzero velocities are  υ  r  and  υ  z  (see Fig. 4.2). If the 
fl ow is steady and incompressible and  υ  z   5   Bz , where  B  is 
constant, fi nd the most general form of  υ  r  which satisfi es 
continuity. 

   P4.23  A tank volume  9  contains gas at conditions ( ρ  0 ,  p  0 ,  T  0 ). At 
time  t     5    0 it is punctured by a small hole of area  A . Accord-
ing to the theory of Chap. 9, the mass fl ow out of such a 
hole is approximately proportional to  A  and to the tank 
pressure. If the tank temperature is assumed constant and 
the gas is ideal, fi nd an expression for the variation of 
 density within the tank. 

   P4.24  For laminar fl ow between parallel plates (see Fig. 4.12 b ), 
the fl ow is two-dimensional (υ ? 0) if the walls are 
 porous. A special case solution is u 5 (A 2 Bx) (h2 2 y2), 
where  A  and  B  are constants. ( a ) Find a general formula for 
velocity  υ  if  υ   5  0 at  y   5  0. ( b ) What is the value of the 
constant  B  if  υ   5   υ  w  at  y   5   1  h ? 

   P4.25  An incompressible fl ow in polar coordinates is given by 

   υr 5 K cos θ a1 2
b

r2b  

   υθ 5 2K sin θ a1 1
b

r2b 
 Does this fi eld satisfy continuity? For consistency, what 
should the dimensions of constants  K  and  b  be? Sketch the 
surface where  υ  r   5  0 and interpret. 

  Linear momentum: Navier-Stokes  

 *  P4.26  Curvilinear, or streamline, coordinates are defi ned in 
Fig. P4.26, where  n  is normal to the streamline in the plane 
of the radius of curvature  R . Euler’s frictionless momen-
tum equation (4.36) in streamline coordinates becomes 

   
0V
0t

1 V 
0V
0s

5 2
1

ρ
  

0p
0s

1 gs (1) 

   2V 
0θ
0t

2
V2

R
5 2

1

ρ
 
0p
0n

1 gn (2) 

 Show that the integral of Eq. (1) with respect to  s  is none 
other than our old friend Bernoulli’s equation (3.54). 

   P4.26   

n s, V

z

x

y

R

Streamline

θ

   P4.27  A frictionless, incompressible steady fl ow fi eld is given by 

 V 5 2xyi 2 y2j 

 in arbitrary units. Let the density be  ρ  0     5    constant and 
 neglect gravity. Find an expression for the pressure  gradient 
in the  x  direction. 

   P4.28  For the velocity distribution of Prob. 4.10, ( a ) check conti-
nuity. ( b ) Are the Navier-Stokes equations valid? ( c ) If so, 
determine  p ( x, y)  if the pressure at the origin is  p  0 . 

   P4.29  Consider a steady, two-dimensional, incompressible fl ow 
of a newtonian fl uid in which the velocity fi eld is 
known:   u      5     2 2 xy ,  υ     5     y  2     2     x  2 ,  w     5    0. ( a ) Does this 
fl ow  satisfy conservation of mass? ( b ) Find the pressure 
fi eld,  p ( x ,  y ) if the pressure at the point ( x     5    0,  y     5    0) is 
equal to  p  a . 
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   P4.30  For the velocity distribution of Prob. P4.4, determine if 
( a )  the equation of continuity and ( b ) the Navier-Stokes 
equation are satisfi ed. ( c ) If the latter is true, fi nd the pres-
sure distribution  p ( x ,  y ) when the pressure at the origin 
equals  p  o . 

   P4.31  According to potential theory (Chap. 8) for the fl ow 
 approaching a rounded two-dimensional body, as in 
Fig.   P4.31, the velocity approaching the stagnation point is 
given by  u     5     U (1    2     a  2 / x  2 ), where  a  is the nose radius and 
 U  is the velocity far upstream. Compute the value and posi-
tion of the maximum viscous normal stress along this 
streamline. 

   P4.31   

Stagnation
point

(u = 0)

0
a

y

x

 Is this also the position of maximum fl uid deceleration? 
Evaluate the maximum viscous normal stress if the fl uid is 
SAE 30 oil at 20 8 C, with  U     5    2 m/s and  a     5    6 cm. 

   P4.32  The answer to Prob. P4.14 is  υ  θ     5    f( r ) only. Do not reveal 
this to your friends if they are still working on Prob. P4.14. 
Show that this fl ow fi eld is an exact solution to the Navier-
Stokes equations (4.38) for only two special cases of the 
function f( r ). Neglect gravity. Interpret these two cases 
physically. 

   P4.33  Consider incompressible fl ow at a volume rate  Q  toward 
a  drain at the vertex of a 45 8  wedge of width  b , as in 
Fig. P4.33. Neglect gravity and friction and assume purely 
radial infl ow. ( a ) Find an expression for  υ  r ( r ). ( b ) Show 
that the viscous term in the  r -momentum equation is zero. 
( c ) Find the pressure distribution  p ( r ) if  p   5   p  o  at  r   5   R . 

   P4.33   

Q
r

Drain

θ

θ π=   /4

   P4.34  A proposed three-dimensional incompressible fl ow fi eld 
has the following vector form: 

 V 5 Kxi 1 Kyj 2 2Kzk 

   ( a ) Determine if this fi eld is a valid solution to continuity 
and Navier-Stokes. ( b ) If  g     5     2  g  k,  fi nd the pressure fi eld 
 p ( x ,  y ,  z ). ( c ) Is the fl ow irrotational? 

   P4.35  From the Navier-Stokes equations for incompressible fl ow 
in polar coordinates (App. D for cylindrical coordinates), 
fi nd the most general case of purely circulating motion 
 υ  θ ( r ),  υ  r     5     υ  z     5    0, for fl ow with no slip between two fi xed 
concentric cylinders, as in Fig. P4.35. 

   P4.35   

r

r = a

r = b

 (r)

No slip

θ
υ

   P4.36  A constant-thickness fi lm of viscous liquid fl ows in  laminar 
motion down a plate inclined at angle  θ , as in Fig. P4.36. 
The velocity profi le is 

 u 5 Cy(2h 2 y)  υ 5 w 5 0 

 Find the constant  C  in terms of the specifi c weight and 
viscosity and the angle  θ . Find the volume fl ux  Q  per unit 
width in terms of these parameters. 

   P4.36   

g
y

u(y)

x

θ

h

 *  P4.37  A viscous liquid of constant  ρ  and  μ  falls due to gravity 
between two plates a distance 2 h  apart, as in Fig.   P4.37. The 
fl ow is fully developed, with a single velocity  component 
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 w      5     w ( x ). There are no applied pressure gradients, only 
gravity. Solve the Navier-Stokes equation for the  velocity 
profi le between the plates. 

   P4.37   

h h

x

z, w

   P4.38  Show that the incompressible fl ow distribution, in cylindri-
cal coordinates, 

  vr 5 0    vθ 5 Crn    vz 5 0 

 where  C  is a constant, ( a ) satisfi es the Navier-Stokes equa-
tion for only two values of  n . Neglect gravity. ( b ) Knowing 
that  p   5   p ( r ) only, fi nd the pressure distribution for each 
case, assuming that the pressure at  r   5   R  is  p  0 . What might 
these two cases represent? 

  Angular momentum: couple stresses  

   P4.39  Reconsider the angular momentum balance of Fig. 4.5 by 
adding a concentrated  body couple C  z  about the  z  axis [6]. 
Determine a relation between the body couple and shear 
stress for equilibrium. What are the proper dimensions for 
 C  z ? (Body couples are important in continuous media with 
microstructure, such as granular materials.) 

  The differential energy equation  

   P4.40  For pressure-driven laminar fl ow between parallel plates 
(see Fig. 4.12 b ), the velocity components are  u   5   U (1– 
y 2 / h  2 ),  υ   5  0, and  w   5  0, where  U  is the centerline  velocity. 
In the spirit of Ex. 4.6, fi nd the temperature distribution 
 T ( y ) for a constant wall temperature  T  w . 

   P4.41  As mentioned in Sec. 4.10, the velocity profi le for laminar 
fl ow between two plates, as in Fig. P4.41, is 

  u 5
4umax 

y(h 2 y)

h2     υ 5 w 5 0 

 If the wall temperature is  T  w  at both walls, use the 
 incompressible fl ow energy equation (4.75) to solve for 
the  temperature distribution  T ( y ) between the walls for 
steady fl ow. 

   P4.41   

y = h

y

y = 0

u(y) T(y)

x

Tw

Tw

  Boundary conditions  

   P4.42  Suppose we wish to analyze the rotating, partly full cylin-
der of Fig. 2.23 as a  spin-up  problem, starting from rest and 
continuing until solid-body rotation is achieved. What are 
the appropriate boundary and initial conditions for this 
problem? 

   P4.43  For the draining liquid fi lm of Fig. P4.36, what are the 
 appropriate boundary conditions ( a ) at the bottom  y     5  0 
and ( b ) at the surface  y     5     h ? 

   P4.44  Suppose that we wish to analyze the sudden pipe expansion 
fl ow of Fig. P3.59, using the full continuity and Navier-
Stokes equations. What are the proper boundary conditions 
to handle this problem? 

   P4.45  For the sluice gate problem of Example 3.10, list all the 
boundary conditions needed to solve this fl ow exactly by, 
say, computational fl uid dynamics. 

   P4.46  Fluid from a large reservoir at temperature  T  0  fl ows into a 
circular pipe of radius  R . The pipe walls are wound with an 
electric resistance coil that delivers heat to the fl uid at a rate 
 q  w  (energy per unit wall area). If we wish to analyze this 
problem by using the full continuity, Navier-Stokes, and 
energy equations, what are the proper boundary conditions 
for the analysis? 

  Stream function  

   P4.47  A two-dimensional incompressible fl ow is given by the 
velocity fi eld  V     5    3 y  i     1    2 x  j , in arbitrary units. Does 
this fl ow satisfy continuity? If so, fi nd the stream function 
 ψ ( x ,  y ) and plot a few streamlines, with arrows. 

   P4.48  Consider the following two-dimensional incompressible 
fl ow, which clearly satisfi es continuity: 

  u 5 U0 5 constant, υ 5 V0 5 constant 

 Find the stream function  ψ ( r ,  θ ) of this fl ow using  polar 
coordinates.  

   P4.49  Investigate the stream function  ψ     5     K ( x  2     2     y  2 ),  K     5   
  constant. Plot the streamlines in the full  xy  plane, fi nd any 
stagnation points, and interpret what the fl ow could 
 represent. 
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   P4.50  In 1851, George Stokes (of Navier-Stokes fame) solved the 
problem of steady incompressible low-Reynolds-number 
fl ow past a sphere, using  spherical polar  coordinates ( r ,  θ )  
 [Ref. 5, page 168]. In these coordinates, the equation of 
continuity is 

  
0
0r

(r2υr sin θ) 1
0
0θ

(r υθ sin θ ) 5 0 

   ( a ) Does a stream function exist for these coordinates? 
 (b )  If so, fi nd its form. 

   P4.51  The velocity profi le for pressure-driven laminar fl ow 
 between parallel plates (see Fig. 4.12 b ) has the form  u   5  
 C ( h  2  –  y  2 ), where  C  is a constant. ( a ) Determine if a stream 
function exists. ( b ) If so, fi nd a formula for the stream 
 function. 

   P4.52  A two-dimensional, incompressible, frictionless fl uid is 
guided by wedge-shaped walls into a small slot at the 
 origin, as in Fig. P4.52. The width into the paper is  b , 

 
Slot

θ =π/4

vr

θ = 0

r

   P4.52  

 and the volume fl ow rate is  Q . At any given distance  r  from 
the slot, the fl ow is radial inward, with constant velocity. 
Find an expression for the polar coordinate stream function 
of this fl ow. 

   P4.53  For the fully developed laminar pipe fl ow solution of 
Eq. (4.137), fi nd the axisymmetric stream function  ψ ( r ,    z ). 
Use this result to determine the average velocity  V     5     Q / A  
in the pipe as a ratio of  u  max . 

   P4.54  An incompressible stream function is defi ned by 

 ψ (x, y) 5
U

L2 (3x2y 2 y3) 

 where  U  and  L  are (positive) constants. Where in this 
 chapter are the streamlines of this fl ow plotted? Use 
this  stream function to fi nd the volume fl ow  Q  passing 
through the rectangular surface whose corners are defi ned 
by ( x ,  y ,  z )    5    (2 L , 0, 0), (2 L , 0,  b ), (0,  L ,  b ), and (0,  L , 0). 
Show the direction of  Q . 

   P4.55  The proposed fl ow in Prob. P4.19 does indeed satisfy the 
equation of continuity. Determine the polar-coordinate 
stream function of this fl ow. 

  Velocity potential, vorticity  

   P4.56  Investigate the velocity potential  ϕ     5     Kxy ,  K     5    constant. 
Sketch the potential lines in the full  xy  plane, fi nd any stag-
nation points, and sketch in by eye the orthogonal stream-
lines. What could the fl ow represent? 

   P4.57  A two-dimensional incompressible fl ow fi eld is defi ned by 
the velocity components 

  u 5 2V a x

L
2

y

L
b    υ 5 22V 

y

L
 

 where  V  and  L  are constants. If they exist, fi nd the stream 
function and velocity potential. 

   P4.58  Show that the incompressible velocity potential in plane 
polar coordinates  ϕ ( r ,  θ ) is such that 

  υr 5
0ϕ
0r
  υθ 5

1
r
 
0ϕ
0θ

 

 Finally show that  ϕ  as defi ned here satisfi es Laplace’s 
equation in polar coordinates for incompressible fl ow. 

   P4.59  Consider the two-dimensional incompressible velocity po-
tential  ϕ     5     xy     1     x  2     2     y  2 . ( a ) Is it true that  =  2  ϕ     5    0, and, if 
so, what does this mean? ( b ) If it exists, fi nd the stream 
function  ψ ( x ,  y ) of this fl ow. ( c ) Find the equation of the 
streamline that passes through ( x ,  y )    5    (2, 1). 

   P4.60  Liquid drains from a small hole in a tank, as shown in 
Fig. P4.60, such that the velocity fi eld set up is given by 
 υ  r     <    0,  υ  z     <    0,  υ  θ     5     KR  2 / r , where  z     5     H  is the depth of the 
water far from the hole. Is this fl ow pattern rotational or 
irrotational? Find the depth  z  C  of the water at the radius 
 r     5     R . 

 

patm

z = 0

z

r

r = R

zC?

z = H

   P4.60  
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   P4.61  An incompressible stream function is given by 
ψ 5 aθ 1 br sin θ. ( a ) Does this fl ow have a velocity 
 potential? ( b ) If so, fi nd it. 

   P4.62  Show that the linear Couette fl ow between plates in Fig. 1.7 
has a stream function but no velocity potential. Why is 
this so? 

   P4.63  Find the two-dimensional velocity potential  ϕ ( r ,  θ ) for the 
polar coordinate fl ow pattern  υ  r     5     Q / r ,  υ  θ     5     K / r , where  Q  
and  K  are constants. 

   P4.64  Show that the velocity potential  ϕ ( r ,  z ) in axisymmetric 
cylindrical coordinates (see Fig. 4.2) is defi ned such that 

  υr 5
0ϕ
0r
   υz 5

0ϕ
0z

 

 Further show that for incompressible fl ow this potential 
satisfi es Laplace’s equation in ( r ,  z ) coordinates. 

   P4.65  Consider the function  f   5   ay   2   by  3 . ( a ) Could this repre-
sent a realistic velocity potential?  Extra credit : ( b ) Could it 
represent a stream function? 

   P4.66  A plane polar coordinate velocity potential is defi ned by 

  ϕ 5
K cos θ

r
  K 5 const 

 Find the stream function for this fl ow, sketch some stream-
lines and potential lines, and interpret the fl ow pattern. 

   P4.67  A stream function for a plane, irrotational, polar coordinate 
fl ow is 

  ψ 5 Cθ 2 K ln r  C and K 5 const 

 Find the velocity potential for this fl ow. Sketch some stream-
lines and potential lines, and interpret the fl ow  pattern. 

  Stream function   and   velocity potential  

   P4.68  For the velocity distribution of Prob. P4.4, ( a ) determine if 
a velocity potential exists, and ( b ), if it does, fi nd an 
 expression for  ϕ ( x ,  y ) and sketch the potential line which 
passes through the point ( x ,  y )  5  ( L /2,  L /2). 

   P4.69  A steady, two-dimensional fl ow has the following polar-
coordinate velocity potential: 

 ϕ 5 C r cos θ 1 K ln r 

 where  C  and  K  are constants. Determine the stream func-
tion  ψ ( r ,    θ  ) for this fl ow. For extra credit, let  C  be a veloc-
ity scale  U  and let  K   5   UL ,   sketch what the fl ow might 
represent. 

   P4.70  A CFD model of steady two-dimensional incompressible 
fl ow has printed out the values of stream function  ψ ( x ,  y ), in 
m 2 /s, at each of the four corners of a small 10-cm-by-10-cm 
cell, as shown in Fig. P4.70. Use these numbers to estimate 

the resultant velocity in the center of the cell and its angle 
 α    with respect to the  x  axis. 

 y = 1.0 m

y = 1.1 m

V ?

?

x = 1.5 m

1.7308 m2/s 1.7978

2.0206

x = 1.6 m

 = 1.9552 m2/sψ

α

   P4.70  

   P4.71  Consider the following two-dimensional function  f ( x ,  y ): 

  f 5 Ax3 1 Bxy2 1 Cx2 1 D  where A . 0 

   ( a ) Under what conditions, if any, on ( A ,  B ,  C ,  D ) can this 
function be a steady plane-fl ow velocity potential? ( b ) If 
you fi nd a  ϕ ( x ,  y ) to satisfy part ( a ), also fi nd the associated 
stream function  ψ ( x ,  y ), if any, for this fl ow. 

   P4.72  Water fl ows through a two-dimensional narrowing wedge 
at 9.96 gal/min per meter of width into the paper 
(Fig. P4.72). If this inward fl ow is purely radial, fi nd an 
expression, in SI units, for ( a ) the stream function and 
( b )  the velocity potential of the fl ow. Assume one- 
dimensional fl ow. The included angle of the wedge is 45 8 . 

   P4.72   

Drain

Q r

   P4.73  A CFD model of steady two-dimensional incompressible 
fl ow has printed out the values of velocity potential  ϕ ( x ,  y ), 
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in m 2 /s, at each of the four corners of a small 10-cm-by-
10-cm cell, as shown in Fig. P4.73. Use these numbers to 
estimate the resultant velocity in the center of the cell and 
its angle  α    with respect to the  x  axis. 

 y = 1.0 m

y = 1.1 m

V ?

?

x = 1.5 m

4.9038 m2/s 5.1236

5.0610

x = 1.6 m

  = 4.8338 m2/sϕ

α

   P4.73  

   P4.74  Consider the two-dimensional incompressible polar- 
coordinate velocity potential 

  ϕ 5 Br cos θ 1 B L θ 

 where  B  is a constant and  L  is a constant length scale. 
( a )  What are the dimensions of  B ? ( b ) Locate the only 
 stagnation point in this fl ow fi eld. ( c ) Prove that a stream 
function exists and then fi nd the function  ψ ( r ,    θ ). 

   P4.75  Given the following steady  axisymmetric  stream function: 

  ψ 5
B

2
 ar2 2

r4

2R2b where B and R are constants 

 valid in the region 0  <   r   <   R  and 0  <   z   <   L . ( a ) What are 
the dimensions of the constant  B ? ( b ) Show whether this 
fl ow possesses a velocity potential, and, if so, fi nd it. 
( c )  What might this fl ow represent?  Hint:  Examine the 
 axial velocity  v  z . 

 *  P4.76  A two-dimensional incompressible fl ow has the velocity 
potential 

  ϕ 5 K(x2 2 y2) 1 C ln(x2 1 y2) 

 where  K  and  C  are constants. In this discussion, avoid the 
origin, which is a singularity (infi nite velocity). ( a ) Find 
the sole stagnation point of this fl ow, which is somewhere 

in the upper half plane. ( b ) Prove that a stream function 
exists, and then fi nd  ψ ( x ,  y ), using the hint that  ∫  dx /( a  2   1 
  x  2 )  5  (1/ a )tan 2  1 ( x/a ). 

   P4.77  Outside an inner, intense-activity circle of radius  R , a trop-
ical storm can be simulated by a polar-coordinate velocity 
potential  ϕ ( r ,  θ )  5   U  o  R   θ , where  U  o  is the wind velocity at 
radius  R . ( a ) Determine the velocity components outside 
 r   5   R . ( b ) If, at  R   5  25 mi, the velocity is 100 mi/h and the 
pressure 99 kPa, calculate the velocity and pressure at 
 r   5  100 mi. 

   P4.78  An incompressible, irrotational, two-dimensional fl ow has 
the following stream function in polar coordinates: 

  ψ 5 A rn sin (nθ)   where A and n are constants. 

 Find an expression for the velocity potential of this fl ow. 

  Incompressible viscous fl ows  

 *  P4.79  Study the combined effect of the two viscous fl ows in 
Fig. 4.12. That is, fi nd  u ( y ) when the upper plate moves at 
speed  V  and there is also a constant pressure gradient 
( dp / dx ). Is superposition possible? If so, explain why. Plot 
representative velocity profi les for ( a ) zero, ( b ) positive, 
and ( c ) negative pressure gradients for the same upper-wall 
speed  V . 

 *  P4.80  Oil, of density  ρ  and viscosity  μ , drains steadily down the 
side of a vertical plate, as in Fig. P4.80. After a develop-
ment region near the top of the plate, the oil fi lm will 
 become independent of  z  and of constant thickness  δ . 
 Assume that  w     5     w ( x ) only and that the atmosphere offers 
no shear resistance to the surface of the fi lm. ( a ) Solve the 
Navier-Stokes equation for  w ( x ), and sketch its approxi-
mate shape. ( b ) Suppose that fi lm thickness  δ    and the slope 
of the velocity profi le at the wall [ ∂  w /∂   x ] wall  are measured 
with a laser-Doppler anemometer (Chap. 6). Find an 
 expression for oil viscosity  μ  as a function of ( ρ ,  δ ,  g , 
[ ∂  w / ∂  x ] wall ). 

   P4.80   
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   P4.81  Modify the analysis of Fig. 4.13 to fi nd the velocity  u  θ  
when the inner cylinder is fi xed and the outer cylinder 
 rotates at angular velocity  V  0 . May this solution be  added  
to Eq. (4.140) to represent the fl ow caused when both inner 
and outer cylinders rotate? Explain your conclusion. 

 *  P4.82  A solid circular cylinder of radius  R  rotates at angular 
 velocity  V  in a viscous incompressible fl uid that is at rest 
far from the cylinder, as in Fig. P4.82. Make simplifying 
assumptions and derive the governing differential equation 
and boundary conditions for the velocity fi eld  υ  θ  in the 
fl uid. Do not solve unless you are obsessed with this prob-
lem. What is the steady-state fl ow fi eld for this problem? 

   P4.82   

r

θ

r = R
Ω

υ  (r,   , t)θ  θ

   P4.83  The fl ow pattern in bearing lubrication can be illustrated by 
Fig. P4.83, where a viscous oil ( ρ ,  μ ) is forced into the gap 
 h ( x ) between a fi xed slipper block and a wall moving at 
velocity  U . If the gap is thin,  h   !   L , it can be shown that the 
pressure and velocity distributions are of the form  p     5     p ( x ), 
 u     5     u ( y ),  υ     5     w     5    0. Neglecting gravity, reduce the 
 Navier-Stokes equations (4.38) to a single differential 
equation for  u ( y ). What are the proper boundary  conditions? 
Integrate and show that 

  u 5
1

2μ
 
dp

dx
 (y2 2 yh) 1 U a1 2

y

h
b 

 where  h     5     h ( x ) may be an arbitrary, slowly varying gap 
width. (For further information on lubrication theory, see 
Ref. 16.) 
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block

   P4.83  

 *  P4.84  Consider a viscous fi lm of liquid draining uniformly down 
the side of a vertical rod of radius  a , as in Fig.   P4.84. At 
some distance down the rod the fi lm will approach a termi-
nal or  fully developed  draining fl ow of constant outer  radius 
 b , with  υ  z     5     υ  z ( r ),  υ  θ     5     υ  r     5    0. Assume that the atmo-
sphere offers no shear resistance to the fi lm motion. Derive 
a differential equation for  υ  z , state the proper boundary 
conditions, and solve for the fi lm velocity distribution. 
How does the   fi lm radius  b  relate to the total fi lm volume 
fl ow rate  Q ? 
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   P4.84  

   P4.85  A fl at plate of essentially infi nite width and breadth oscil-
lates sinusoidally in its own plane beneath a viscous fl uid, 
as in Fig. P4.85. The fl uid is at rest far above the plate. 
Making as many simplifying assumptions as you can, set 
up the governing differential equation and boundary condi-
tions for fi nding the velocity fi eld  u  in the fl uid. Do not 
solve (if you  can  solve it immediately, you might be able to 
get exempted from the balance of this course with credit). 

   P4.85   

x

y
Incompressible

viscous
fluid u (x, y, z, t)?

Plate velocity:

U0 sin ωt

   P4.86  SAE 10 oil at 20 8 C fl ows between parallel plates 8   mm 
apart, as in Fig. P4.86. A mercury manometer, with wall 
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pressure taps 1 m apart, registers a 6-cm height, as shown. 
Estimate the fl ow rate of oil for this condition. 

   P4.86   

SAE 10
oil Q 8 mm

6 cm
Mercury

1 m

   P4.87  SAE 30W oil at 20 8 C fl ows through the 9-cm-diameter 
pipe in Fig. P4.87 at an average velocity of 4.3 m/s. 

 

h

SAE 30W oilV

D = 9 cm

Hg

2.5 m

   P4.87  

   ( a )   Verify that the fl ow is laminar. ( b ) Determine the vol-
ume fl ow rate in m 3 /h. ( c ) Calculate the expected reading  h  
of the mercury manometer, in cm. 

   P4.88  The viscous oil in Fig. P4.88 is set into steady motion by a 
concentric inner cylinder moving axially at velocity  U  
 inside a fi xed outer cylinder. Assuming constant pressure 
and density and a purely axial fl uid motion, solve Eqs. 
(4.38) for the fl uid velocity distribution  υ  z ( r ). What are the 
proper boundary conditions? 

Fixed outer cylinder

U

vz

b vz(r)r

a

Oil:   ,ρ μ

   P4.88  

  P4.89  Oil fl ows steadily between two fi xed plates that are 2 inches 
apart. When the pressure gradient is 3200 pascals per  meter, 
the average velocity is 0.8 m/s. ( a ) What is the fl ow rate 
per meter of width? ( b ) What oil in Table A.4 fi ts this data? 
( c ) Can we be sure that the fl ow is laminar? 

   P4.90  It is desired to pump ethanol at 20 8 C through 25 m of 
straight smooth tubing under laminar-fl ow conditions, 
Re d    5   ρ  Vd / μ   ,  2300. The available pressure drop is 
10 kPa. ( a ) What is the maximum possible mass fl ow, in 
kg/h? ( b ) What is the appropriate diameter? 

 *  P4.91  Analyze fully developed laminar pipe fl ow for a  power-law  
fl uid,  τ   5  C( dv  z   /dr ) n , for  n   fi  1, as in Prob. P1.46. 
(a)  Derive an expression for  v  z ( r ). (b) For extra credit, plot 
the velocity profi le shapes for  n   5  0.5, 1, and 2. [ Hint:  In 
Eq. (4.136), replace  μ (d v  z /d r ) with  τ .] 

   P4.92  A tank of area  A  0  is draining in laminar fl ow through a pipe 
of diameter  D  and length  L , as shown in Fig. P4.92. 
 Neglecting the exit jet kinetic energy and assuming the 
pipe fl ow is driven by the hydrostatic pressure at its 
 entrance, derive a formula for the tank level  h ( t ) if its initial 
level is  h  0 . 

 

Area Ao

h(t)

V(t)

ρ, μ

D, L

   P4.92  

   P4.93  A number of straight 25-cm-long microtubes of diameter  d  
are bundled together into a “honeycomb” whose total 
cross-sectional area is 0.0006 m 2 . The pressure drop from 
entrance to exit is 1.5 kPa. It is desired that the total volume 
fl ow rate be 5 m 3 /h of water at 20 8 C. ( a ) What is the 
 appropriate microtube diameter? ( b ) How many micro-
tubes are in the bundle? ( c ) What is the Reynolds number 
of each microtube? 

   P4.94  A long, solid cylinder rotates steadily in a very viscous 
fl uid, as in Fig. P4.94. Assuming laminar fl ow, solve the 
Navier-Stokes equation in polar coordinates to determine 
the resulting velocity distribution. The fl uid is at rest far 
from the cylinder. [ Hint:  The cylinder does not induce any 
radial motion.] 
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   P4.94  

 *  P4.95  Two immiscible liquids of equal thickness  h  are being 
sheared between a fi xed and a moving plate, as in Fig. P4.95. 
Gravity is neglected, and there is no variation with  x . Find 
an expression for ( a ) the velocity at the interface and ( b ) the 
shear stress in each fl uid. Assume steady laminar fl ow. 

V

x

h

h y

Fixed

ρ μ2, 2

ρ μ1, 1

   P4.95  

  P4.96  Use the data of Prob. P1.40, with the inner cylinder rotating 
and outer cylinder fi xed, and calculate (a) the inner shear 
stress. (b) Determine whether this fl ow pattern is stable. [Hint: 
The shear stress in (r, θ) coordinates is not like plane fl ow. 

  Slip fl ows  

  P4.97  For Couette fl ow between a moving and a fi xed plate, 
Fig. 4.12 a , solve continuity and Navier-Stokes to fi nd the 
velocity distribution when there is  slip  at both walls. 

  P4.98  For the pressure-gradient fl ow between two parallel plates 
of Fig. 4.12( b ), reanalyze for the case of  slip fl ow  at both 
walls. Use the simple slip condition  u  wall   5    /( du / dy ) wall , 
where / is the mean free path of the fl uid. ( a ) Sketch the 
expected  velocity profi le. ( b ) Find an expression for the 
shear stress at each wall. ( c ) Find the volume fl ow between 
the plates. 

  P4.99  For the pressure-gradient fl ow in a circular tube in 
Sec. 4.10, reanalyze for the case of  slip fl ow  at the wall. 
Use the simple slip condition  υ  z  ,wall   5  /( dv  z / dr ) wall,  
where / is the mean free path of the fl uid. ( a ) Sketch the 
 expected velocity profi le. ( b ) Find an expression for the 
shear stress at the wall. ( c ) Find the volume fl ow through 
the tube.     

  Word Problems  

   W4.1  The total acceleration of a fl uid particle is given by 
Eq. (4.2) in the  Eulerian[?]  system, where  V  is a known 
function of space and time. Explain how we might evalu-
ate particle acceleration in the  Lagrangian[?]  frame, 
where particle position  r  is a known function of time and 
initial position,  r     5    fcn( r  0 ,  t ). Can you give an illustrative 
example? 

   W4.2  Is it true that the continuity relation, Eq. (4.6), is valid for 
both viscous and inviscid, newtonian and nonnewtonian, 

compressible and incompressible fl ow? If so, are there  any  
limitations on this equation? 

   W4.3  Consider a CD (compact disc) rotating at angular velocity 
 V . Does it have  vorticity  in the sense of this chapter? If so, 
how much vorticity? 

   W4.4  How much acceleration can fl uids endure? Are fl uids like 
astronauts, who feel that 5 g  is severe? Perhaps use the fl ow 
pattern of Example 4.8, at  r     5     R , to   make some estimates 
of fl uid acceleration magnitudes. 
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   W4.5  State the conditions (there are more than one) under which 
the analysis of temperature distribution in a fl ow fi eld can 
be completely uncoupled, so that a separate analysis for 
velocity and pressure is possible. Can we do this for both 
laminar and turbulent fl ow? 

   W4.6  Consider liquid fl ow over a dam or weir. How might the 
boundary conditions and the fl ow pattern change when we 
compare water fl ow over a large prototype to SAE 30 oil 
fl ow over a tiny scale model? 

   W4.7  What is the difference between the stream function  ψ    and 
our method of fi nding the streamlines from Sec.   1.11? Or 
are they essentially the same? 

   W4.8  Under what conditions do both the stream function  ψ  and 
the velocity potential  ϕ  exist for a fl ow fi eld? When does 
one exist but not the other? 

   W4.9  How might the remarkable three-dimensional Taylor 
 instability of Fig. 4.14 be predicted? Discuss a general 
 procedure for examining the stability of a given fl ow 
 pattern. 

   W4.10  Consider an irrotational, incompressible, axisymmetric 
( ∂ / ∂  θ     5    0) fl ow in ( r ,  z ) coordinates. Does a stream func-
tion exist? If so, does it satisfy Laplace’s equation? Are 
lines of constant  ψ  equal to the fl ow streamlines? Does a 
velocity potential exist? If so, does it satisfy Laplace’s 
equation? Are lines of constant  ϕ  everywhere perpendicu-
lar to the  ψ  lines? 

  Fundamentals of Engineering Exam Problems  

 This chapter is not a favorite of the people who prepare the FE 
Exam. Probably not a single problem from this chapter will appear 
on the exam, but if some did, they might be like these. 
   FE4.1  Given the steady, incompressible velocity distribution  V     5   

 3 x  i     1     Cy  j     1    0 k , where  C  is a constant, if conservation of 
mass is satisfi ed, the value of  C  should be 

   ( a ) 3,      ( b ) 3/2,      ( c ) 0,      ( d  )  2 3/2,      ( e )    2 3 
   FE4.2  Given the steady velocity distribution  V     5    3 x  i     1    0 j     1   

  Cy  k , where  C  is a constant, if the fl ow is irrotational, the 
value of  C  should be 

   ( a ) 3,      ( b ) 3/2,      ( c ) 0,      ( d  )  2 3/2,      ( e )  2 3 
   FE4.3  Given the steady, incompressible velocity distribution 

 V     5    3 x  i     1     Cy  j     1    0 k , where  C  is a constant, the shear stress 
 τ  xy  at the point ( x ,  y ,  z ) is given by 

   ( a ) 3 μ ,     ( b ) (3 x     1     Cy ) μ ,     ( c ) 0,     ( d  )  C  μ , ( e ) (3    1     C ) μ  

   FE4.4  Given the steady, incompressible velocity distribution 
 u   5   Ax ,  υ   5   By , and  w   5   Cxy , where ( A ,  B ,  C ) are con-
stants. This fl ow satisfi es the equation of continuity if 
 A  equals 

   ( a )  B , ( b )  B   1   C , ( c )  B   2   C , ( d  )  2  B , ( e )  2 ( B   1   C  ) 
   FE4.5  For the velocity fi eld in Prob. FE4.4, the convective 

 acceleration in the  x  direction is 
   ( a )  Ax  2 ,      ( b )  A  2  x ,      ( c )  B  2  y , ( d  )  By  2 , ( e )  Cx  2  y  
   FE4.6  If, for laminar fl ow in a smooth, straight tube, the tube 

 diameter and length both double, while everything else 
 remains the same, the volume fl ow rate will  increase by a 
factor of 

   ( a ) 2,      ( b ) 4,      ( c ) 8,      ( d  ) 12,      ( e ) 16 

  Comprehensive Problems  

   C4.1  In a certain medical application, water at room temperature 
and pressure fl ows through a rectangular channel of length 
 L     5    10 cm, width  s     5    1.0 cm, and gap thickness  b     5   
 0.30 mm as in Fig. C4.1. The volume fl ow rate is sinusoi-
dal with amplitude Q̂    5    0.50 mL/s and frequency  f     5   
 20 Hz, i.e.,  Q     5    Q̂ sin (2 π  ft ). 

   ( a ) Calculate the maximum Reynolds number (Re    5     Vb / υ ) 
based on maximum average velocity and gap thickness. 
Channel fl ow like this remains laminar for Re less than 
about 2000. If Re is greater than about 2000, the fl ow will 
be turbulent. Is this fl ow laminar or turbulent? ( b ) In this 
problem, the frequency is low enough that at any given 
time, the fl ow can be solved as if it were steady at the given 

fl ow rate. (This is called a  quasi-steady assumption. ) At 
any arbitrary instant of time, fi nd an expression for stream-
wise velocity  u  as a function of  y ,  μ ,  dp / dx , and  b , where 
 dp / dx  is the pressure gradient required to push the fl ow 
through the channel at volume fl ow rate  Q . In addition, 
 estimate the maximum magnitude of velocity component   u . 
( c ) At any instant of time, fi nd a relationship between vol-
ume fl ow rate  Q  and pressure gradient  dp / dx . Your  answer 
should be given as an expression for  Q  as a function of 
 dp / dx ,  s ,  b , and viscosity  μ . ( d  ) Estimate the wall shear 
stress,  τ  w  as a function of Q̂,  f ,  μ ,  b ,  s , and time ( t ). 
( e )  Finally, for the numbers given in the problem statement, 
estimate the amplitude of the wall shear stress, τ̂w, in N/m 2 . 
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   C4.1  

   C4.2  A belt moves upward at velocity  V,  dragging a fi lm of 
 viscous liquid of thickness  h , as in Fig. C4.2. Near the belt, 
the fi lm moves upward due to no slip. At its outer edge, the 
fi lm moves downward due to gravity. Assuming that 
the only nonzero velocity is  υ ( x ), with zero shear stress at 
the outer fi lm edge, derive a formula for ( a )  υ ( x ), ( b ) the 

average velocity  V  avg  in the fi lm, and ( c ) the velocity  V  c  for 
which there is no net fl ow either up or down. ( d  ) Sketch 
 υ ( x ) for case ( c ). 

   C4.2   

x, u
V

h ≈ constant

y, v

ρ, μ

Belt
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