
Fortran

114

We have so far seen that we can read data from keyboard using the read * statement,
and display output to the screen using the print* statement, respectively. This form of
input-output is free format I/O, and it is called list-directed input-output.

The free format simple I/O has the form:

read(*,*) item1, item2, item3...

print *, item1, item2, item3

write(*,*) item1, item2, item3...

However the formatted I/O gives you more flexibility over data transfer.

Formatted Input Output
Formatted input output has the syntax as follows:

read fmt, variable_list

print fmt, variable_list

write fmt, variable_list

Where,

fmt is the format specification

variable-list is a list of the variables to be read from keyboard or written on
screen

Format specification defines the way in which formatted data is displayed. It consists of
a string, containing a list of edit descriptors in parentheses.

An edit descriptor specifies the exact format, for example, width, digits after decimal
point etc., in which characters and numbers are displayed.

For example:

Print "(f6.3)", pi

17. Fortran ─ Basic Input Output

Fortran

115

The following table describes the descriptors:

Descriptor Description Example

I

This is used for integer output. This takes
the form ‘rIw.m’ where the meanings of r,
w and m are given in the table below.
Integer values are right justified in their
fields. If the field width is not large
enough to accommodate an integer then
the field is filled with asterisks.

print "(3i5)", i, j, k

F

This is used for real number output. This
takes the form ‘rFw.d’ where the
meanings of r, w and d are given in the
table below. Real values are right justified
in their fields. If the field width is not
large enough to accommodate the real
number then the field is filled with
asterisks.

print "(f12.3)",pi

E

This is used for real output in exponential
notation. The ‘E’ descriptor statement
takes the form ‘rEw.d’ where the
meanings of r, w and d are given in the
table below. Real values are right justified
in their fields. If the field width is not
large enough to accommodate the real
number then the field is filled with
asterisks.

Please note that, to print out a real
number with three decimal places a field
width of at least ten is needed. One for
the sign of the mantissa, two for the zero,
four for the mantissa and two for the
exponent itself. In general, w ≥ d + 7.

print "(e10.3)",123456.0
gives ‘0.123e+06’

ES

This is used for real output (scientific
notation). This takes the form ‘rESw.d’
where the meanings of r, w and d are
given in the table below. The ‘E’ descriptor
described above di ers slightly from the
traditional well known ‘scientific notation’.
Scientific notation has the mantissa in the
range 1.0 to 10.0 unlike the E descriptor

print "(es10.3)",123456.0
gives ‘1.235e+05’

Fortran

116

which has the mantissa in the range 0.1
to 1.0. Real values are right justified in
their fields. If the field width is not large
enough to accommodate the real number
then the field is filled with asterisks. Here
also, the width field must satisfy the
expression w ≥ d + 7

A

This is used for character output. This
takes the form ‘rAw’ where the meanings
of r and w are given in the table below.
Character types are right justified in their
fields. If the field width is not large
enough to accommodate the character
string then the field is filled with the first
‘w’ characters of the string.

print "(a10)", str

X
This is used for space output. This takes
the form ‘nX’ where ‘n’ is the number of
desired spaces.

print "(5x, a10)", str

/
Slash descriptor – used to insert blank
lines. This takes the form ‘/’ and forces
the next data output to be on a new line.

print "(/,5x, a10)", str

Following symbols are used with the format descriptors:

Symbol Description

c Column number

d Number of digits to right of the decimal place for real input or output

m Minimum number of digits to be displayed

n Number of spaces to skip

r Repeat count – the number of times to use a descriptor or group of
descriptors

w Field width – the number of characters to use for the input or output

Fortran

117

Example 1

program printPi

 pi = 3.141592653589793238

 Print "(f6.3)", pi

 Print "(f10.7)", pi

 Print "(f20.15)", pi

 Print "(e16.4)", pi/100

end program printPi

When the above code is compiled and executed, it produces the following result:

3.142

3.1415927

3.141592741012573

0.3142E-01

Example 2

program printName

implicit none

 character (len=15) :: first_name

 print *,' Enter your first name.'

 print *,' Up to 20 characters, please'

 read *,first_name

 print "(1x,a)",first_name

end program printName

When the above code is compiled and executed, it produces the following result:
(assume the user enters the name Zara)

Enter your first name.

Up to 20 characters, please

Zara

Fortran

118

Example 3

program formattedPrint

implicit none

 real :: c = 1.2786456e-9, d = 0.1234567e3

 integer :: n = 300789, k = 45, i = 2

 character (len=15) :: str="Tutorials Point"

 print "(i6)", k

 print "(i6.3)", k

 print "(3i10)", n, k, i

 print "(i10,i3,i5)", n, k, i

 print "(a15)",str

 print "(f12.3)", d

 print "(e12.4)", c

 print '(/,3x,"n = ",i6, 3x, "d = ",f7.4)', n, d

end program formattedPrint

When the above code is compiled and executed, it produces the following result:

45

045

300789 45 2

300789 45 2

Tutorials Point

123.457

0.1279E-08

n = 300789 d = *******

Fortran

119

The Format Statement
The format statement allows you to mix and match character, integer and real output in
one statement. The following example demonstrates this:

program productDetails

implicit none

 character (len=15) :: name

 integer :: id

 real :: weight

 name = 'Ardupilot'

 id = 1

 weight = 0.08

 print *,' The product details are'

 print 100

 100 format (7x,'Name:', 7x, 'Id:', 1x, 'Weight:')

 print 200, name, id, weight

 200 format(1x, a, 2x, i3, 2x, f5.2)

end program productDetails

When the above code is compiled and executed, it produces the following result:

The product details are

Name: Id: Weight:

Ardupilot 1 0.08

Fortran

120

Fortran allows you to read data from, and write data into files.

In the last chapter, you have seen how to read data from, and write data to the
terminal. In this chapter you will study file input and output functionalities provided by
Fortran.

You can read and write to one or more files. The OPEN, WRITE, READ and CLOSE
statements allow you to achieve this.

Opening and Closing Files
Before using a file you must open the file. The open command is used to open files for
reading or writing. The simplest form of the command is:

open (unit = number, file = "name").

However, the open statement may have a general form:

open (list-of-specifiers)

The following table describes the most commonly used specifiers:

Specifier Description

[UNIT=] u
The unit number u could be any number in the range 9-99 and it
indicates the file, you may choose any number but every open file in
the program must have a unique number

IOSTAT= ios
It is the I/O status identifier and should be an integer variable. If the
open statement is successful then the ios value returned is zero else
a non-zero value.

ERR = err It is a label to which the control jumps in case of any error.

FILE = fname File name, a character string.

STATUS = sta
It shows the prior status of the file. A character string and can have
one of the three values NEW, OLD or SCRATCH. A scratch file is
created and deleted when closed or the program ends.

ACCESS = acc It is the file access mode. Can have either of the two values,
SEQUENTIAL or DIRECT. The default is SEQUENTIAL.

18. Fortran ─ File Input Output

Fortran

121

FORM= frm It gives the formatting status of the file. Can have either of the two
values FORMATTED or UNFORMATTED. The default is UNFORMATTED

RECL = rl It specifies the length of each record in a direct access file.

After the file has been opened, it is accessed by read and write statements. Once done,
it should be closed using the close statement.

The close statement has the following syntax:

close ([UNIT=]u[,IOSTAT=ios,ERR=err,STATUS=sta])

Please note that the parameters in brackets are optional.

Example
This example demonstrates opening a new file for writing some data into the file.

program outputdata

implicit none

 real, dimension(100) :: x, y

 real, dimension(100) :: p, q

 integer :: i

! data

 do i=1,100

x(i) = i * 0.1

y(i) = sin(x(i)) * (1-cos(x(i)/3.0))

 end do

! output data into a file

 open(1, file='data1.dat', status='new')

 do i=1,100

write(1,*) x(i), y(i)

 end do

 close(1)

end program outputdata

Fortran

122

When the above code is compiled and executed, it creates the file data1.dat and writes
the x and y array values into it. And then closes the file.

Reading from and Writing into the File
The read and write statements respectively are used for reading from and writing into a
file respectively.

They have the following syntax:

read ([UNIT=]u, [FMT=]fmt, IOSTAT=ios, ERR=err, END=s)

write([UNIT=]u, [FMT=]fmt, IOSTAT=ios, ERR=err, END=s)

Most of the specifiers have already been discussed in the above table.

The END=s specifier is a statement label where the program jumps, when it reaches
end-of-file.

Example
This example demonstrates reading from and writing into a file.

In this program we read from the file, we created in the last example, data1.dat, and
display it on screen.

program outputdata

implicit none

 real, dimension(100) :: x, y

 real, dimension(100) :: p, q

 integer :: i

! data

 do i=1,100

x(i) = i * 0.1

y(i) = sin(x(i)) * (1-cos(x(i)/3.0))

 end do

! output data into a file

 open(1, file='data1.dat', status='new')

 do i=1,100

write(1,*) x(i), y(i)

 end do

 close(1)

Fortran

123

! opening the file for reading

 open (2, file='data1.dat', status='old')

 do i=1,100

 read(2,*) p(i), q(i)

 end do

 close(2)

 do i=1,100

write(*,*) p(i), q(i)

 end do

end program outputdata

When the above code is compiled and executed, it produces the following result:

0.100000001 5.54589933E-05

0.200000003 4.41325130E-04

0.300000012 1.47636665E-03

0.400000006 3.45637114E-03

0.500000000 6.64328877E-03

0.600000024 1.12552457E-02

0.699999988 1.74576249E-02

0.800000012 2.53552198E-02

0.900000036 3.49861123E-02

1.00000000 4.63171229E-02

1.10000002 5.92407547E-02

1.20000005 7.35742599E-02

1.30000007 8.90605897E-02

1.39999998 0.105371222

1.50000000 0.122110792

1.60000002 0.138823599

1.70000005 0.155002072

1.80000007 0.170096487

1.89999998 0.183526158

Fortran

124

2.00000000 0.194692180

2.10000014 0.202990443

2.20000005 0.207826138

2.29999995 0.208628103

2.40000010 0.204863414

2.50000000 0.196052119

2.60000014 0.181780845

2.70000005 0.161716297

2.79999995 0.135617107

2.90000010 0.103344671

3.00000000 6.48725405E-02

3.10000014 2.02930309E-02

3.20000005 -3.01767997E-02

3.29999995 -8.61928314E-02

3.40000010 -0.147283033

3.50000000 -0.212848678

3.60000014 -0.282169819

3.70000005 -0.354410470

3.79999995 -0.428629100

3.90000010 -0.503789663

4.00000000 -0.578774154

4.09999990 -0.652400017

4.20000029 -0.723436713

4.30000019 -0.790623367

4.40000010 -0.852691114

4.50000000 -0.908382416

4.59999990 -0.956472993

4.70000029 -0.995793998

4.80000019 -1.02525222

4.90000010 -1.04385209

5.00000000 -1.05071592

5.09999990 -1.04510069

5.20000029 -1.02641726

5.30000019 -0.994243503

5.40000010 -0.948338211

5.50000000 -0.888650239

Fortran

125

5.59999990 -0.815326691

5.70000029 -0.728716135

5.80000019 -0.629372001

5.90000010 -0.518047631

6.00000000 -0.395693362

6.09999990 -0.263447165

6.20000029 -0.122622721

6.30000019 2.53026206E-02

6.40000010 0.178709000

6.50000000 0.335851669

6.59999990 0.494883657

6.70000029 0.653881252

6.80000019 0.810866773

6.90000010 0.963840425

7.00000000 1.11080539

7.09999990 1.24979746

7.20000029 1.37891412

7.30000019 1.49633956

7.40000010 1.60037732

7.50000000 1.68947268

7.59999990 1.76223695

7.70000029 1.81747139

7.80000019 1.85418403

7.90000010 1.87160957

8.00000000 1.86922085

8.10000038 1.84674001

8.19999981 1.80414569

8.30000019 1.74167395

8.40000057 1.65982044

8.50000000 1.55933595

8.60000038 1.44121361

8.69999981 1.30668485

8.80000019 1.15719533

8.90000057 0.994394958

9.00000000 0.820112705

9.10000038 0.636327863

Fortran

126

9.19999981 0.445154816

9.30000019 0.248800844

9.40000057 4.95488606E-02

9.50000000 -0.150278628

9.60000038 -0.348357052

9.69999981 -0.542378068

9.80000019 -0.730095863

9.90000057 -0.909344316

10.0000000 -1.07807255

