
Fortran

73

Arrays can store a fixed-size sequential collection of elements of the same type. An array
is used to store a collection of data, but it is often more useful to think of an array as a
collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to
the first element and the highest address to the last element.

Numbers(1) Numbers(2) Numbers(3) Numbers(4) …

Arrays can be one-dimensional (like vectors), two-dimensional (like matrices) and
Fortran allows you to create up to 7-dimensional arrays.

Declaring Arrays
Arrays are declared with the dimension attribute.

For example, to declare a one-dimensional array named number, of real numbers
containing 5 elements, you write,

real, dimension(5) :: numbers

The individual elements of arrays are referenced by specifying their subscripts. The first
element of an array has a subscript of one. The array numbers contains five real
variables –numbers(1), numbers(2), numbers(3), numbers(4), and numbers(5).

To create a 5 x 5 two-dimensional array of integers named matrix, you write:

integer, dimension (5,5) :: matrix

You can also declare an array with some explicit lower bound, for example:

real, dimension(2:6) :: numbers

integer, dimension (-3:2,0:4) :: matrix

13. Fortran ─ Arrays

Fortran

74

Assigning Values
You can either assign values to individual members, like,

numbers(1) = 2.0

or, you can use a loop,

do i=1,5

 numbers(i) = i * 2.0

end do

One-dimensional array elements can be directly assigned values using a short hand
symbol, called array constructor, like,

numbers = (/1.5, 3.2,4.5,0.9,7.2 /)

Please note that there are no spaces allowed between the brackets ‘(‘and the back slash ‘/’

Example
The following example demonstrates the concepts discussed above.

program arrayProg

 real :: numbers(5) !one dimensional integer array

 integer :: matrix(3,3), i , j !two dimensional real array

!assigning some values to the array numbers

 do i=1,5

numbers(i) = i * 2.0

 end do

!display the values

 do i = 1, 5

Print *, numbers(i)

 end do

!assigning some values to the array matrix

 do i=1,3

do j = 1, 3

 matrix(i, j) = i+j

Fortran

75

end do

 end do

!display the values

 do i=1,3

do j = 1, 3

 Print *, matrix(i,j)

end do

 end do

!short hand assignment

 numbers = (/1.5, 3.2,4.5,0.9,7.2 /)

!display the values

 do i = 1, 5

Print *, numbers(i)

 end do

end program arrayProg

When the above code is compiled and executed, it produces the following result:

 2.00000000

 4.00000000

 6.00000000

 8.00000000

 10.0000000

 2

 3

 4

 3

 4

 5

 4

 5

 6

 1.50000000

Fortran

76

 3.20000005

 4.50000000

0.899999976

 7.19999981

Some Array Related Terms
The following table gives some array related terms:

Term Meaning

Rank It is the number of dimensions an array has. For example, for the array
named matrix, rank is 2, and for the array named numbers, rank is 1.

Extent It is the number of elements along a dimension. For example, the array
numbers has extent 5 and the array named matrix has extent 3 in both
dimensions.

Shape The shape of an array is a one-dimensional integer array, containing the
number of elements (the extent) in each dimension. For example, for the
array matrix, shape is (3, 3) and the array numbers it is (5).

Size It is the number of elements an array contains. For the array matrix, it is 9,
and for the array numbers, it is 5.

Passing Arrays to Procedures
You can pass an array to a procedure as an argument. The following example
demonstrates the concept:

program arrayToProcedure

implicit none

 integer, dimension (5) :: myArray

 integer :: i

 call fillArray (myArray)

 call printArray(myArray)

end program arrayToProcedure

Fortran

77

subroutine fillArray (a)

implicit none

 integer, dimension (5), intent (out) :: a

! local variables

 integer :: i

 do i = 1, 5

a(i) = i

 end do

end subroutine fillArray

subroutine printArray(a)

 integer, dimension (5) :: a

 integer::i

 do i = 1, 5

Print *, a(i)

 end do

end subroutine printArray

When the above code is compiled and executed, it produces the following result:

1

2

3

4

5

In the above example, the subroutine fillArray and printArray can only be called with
arrays with dimension 5. However, to write subroutines that can be used for arrays of
any size, you can rewrite it using the following technique:

program arrayToProcedure

Fortran

78

implicit none

 integer, dimension (10) :: myArray

 integer :: i

 interface

subroutine fillArray (a)

 integer, dimension(:), intent (out) :: a

 integer :: i

end subroutine fillArray

subroutine printArray (a)

 integer, dimension(:) :: a

 integer :: i

end subroutine printArray

 end interface

 call fillArray (myArray)

 call printArray(myArray)

end program arrayToProcedure

subroutine fillArray (a)

implicit none

 integer,dimension (:), intent (out) :: a

! local variables

 integer :: i, arraySize

 arraySize = size(a)

 do i = 1, arraySize

a(i) = i

 end do

end subroutine fillArray

Fortran

79

subroutine printArray(a)

implicit none

 integer,dimension (:) :: a

 integer::i, arraySize

 arraySize = size(a)

 do i = 1, arraySize

 Print *, a(i)

 end do

end subroutine printArray

Please note that the program is using the size function to get the size of the array.

When the above code is compiled and executed, it produces the following result:

1

2

3

4

5

6

7

8

9

10

Array Sections
So far we have referred to the whole array, Fortran provides an easy way to refer
several elements, or a section of an array, using a single statement.

To access an array section, you need to provide the lower and the upper bound of the
section, as well as a stride (increment), for all the dimensions. This notation is called
asubscript triplet:

Fortran

80

array ([lower]:[upper][:stride], ...)

When no lower and upper bounds are mentioned, it defaults to the extents you declared,
and stride value defaults to 1.

The following example demonstrates the concept:

program arraySubsection

 real, dimension(10) :: a, b

 integer:: i, asize, bsize

 a(1:7) = 5.0 ! a(1) to a(7) assigned 5.0

 a(8:) = 0.0 ! rest are 0.0

 b(2:10:2) = 3.9

 b(1:9:2) = 2.5

!display

 asize = size(a)

 bsize = size(b)

 do i = 1, asize

Print *, a(i)

 end do

 do i = 1, bsize

Print *, b(i)

 end do

end program arraySubsection

When the above code is compiled and executed, it produces the following result:

5.00000000

5.00000000

5.00000000

5.00000000

5.00000000

Fortran

81

5.00000000

5.00000000

0.00000000E+00

0.00000000E+00

0.00000000E+00

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

Array Intrinsic Functions
Fortran 90/95 provides several intrinsic procedures. They can be divided into 7
categories:

Vector and matrix multiplication

Reduction

Inquiry

Construction

Reshape

Manipulation

Location

Vector andMatrix Multiplication
The following table describes the vector and matrix multiplication functions:

Function Description

dot_product(vector_a, vector_b) This function returns a scalar product of two input
vectors, which must have the same length.

Fortran

82

matmul (matrix_a, matrix_b)
It returns the matrix product of two matrices,
which must be consistent, i.e. have the dimensions
like (m, k) and (k, n)

Example
The following example demonstrates dot product:

program arrayDotProduct

 real, dimension(5) :: a, b

 integer:: i, asize, bsize

 asize = size(a)

 bsize = size(b)

 do i = 1, asize

 a(i) = i

 end do

 do i = 1, bsize

b(i) = i*2

 end do

 do i = 1, asize

Print *, a(i)

 end do

 do i = 1, bsize

Print *, b(i)

 end do

 Print*, 'Vector Multiplication: Dot Product:'

 Print*, dot_product(a, b)

end program arrayDotProduct

When the above code is compiled and executed, it produces the following result:

Fortran

83

1.00000000

2.00000000

3.00000000

4.00000000

5.00000000

2.00000000

4.00000000

6.00000000

8.00000000

10.0000000

Vector Multiplication: Dot Product:

110.000000

Example
The following example demonstrates matrix multiplication:

program matMulProduct

 integer, dimension(3,3) :: a, b, c

 integer :: i, j

 do i = 1, 3

do j = 1, 3

 a(i, j) = i+j

end do

 end do

 print *, 'Matrix Multiplication: A Matrix'

 do i = 1, 3

do j = 1, 3

 print*, a(i, j)

end do

 end do

 do i = 1, 3

Fortran

84

do j = 1, 3

 b(i, j) = i*j

end do

 end do

 Print*, 'Matrix Multiplication: B Matrix'

 do i = 1, 3

do j = 1, 3

 print*, b(i, j)

end do

 end do

 c = matmul(a, b)

 Print*, 'Matrix Multiplication: Result Matrix'

 do i = 1, 3

do j = 1, 3

 print*, c(i, j)

end do

 end do

end program matMulProduct

When the above code is compiled and executed, it produces the following result:

Matrix Multiplication: A Matrix

2

3

4

3

4

5

4

5

Fortran

85

6

 Matrix Multiplication: B Matrix

1

2

3

2

4

6

3

6

9

Matrix Multiplication: Result Matrix

20

40

60

26

52

78

32

64

96

Reduction
The following table describes the reduction functions:

Function Description

all(mask, dim)
It returns a logical value that indicates whether all
relations in mask are .true., along with only the desired
dimension if the second argument is given.

any(mask, dim)
It returns a logical value that indicates whether any
relation in mask is .true., along with only the desired
dimension if the second argument is given.

Fortran

86

count(mask, dim)
It returns a numerical value that is the number of
relations in mask which are .true., along with only the
desired dimension if the second argument is given.

maxval(array, dim, mask)

It returns the largest value in the array array, of those
that obey the relation in the third argument mask, if that
one is given, along with only the desired dimension if the
second argument dim is given.

minval(array, dim, mask)

It returns the smallest value in the array array, of those
that obey the relation in the third argument mask, if that
one is given, along with only the desired dimension if the
second argument DIM is given.

product(array, dim, mask)

It returns the product of all the elements in the array
array, of those that obey the relation in the third
argument mask, if that one is given, along with only the
desired dimension if the second argument dim is given.

sum (array, dim, mask)

It returns the sum of all the elements in the array array,
of those that obey the relation in the third argument
mask, if that one is given, along with only the desired
dimension if the second argument dim is given.

Example
The following example demonstrates the concept:

program arrayReduction

 real, dimension(3,2) :: a

 a = reshape((/5,9,6,10,8,12/), (/3,2/))

 Print *, all(a>5)

 Print *, any(a>5)

 Print *, count(a>5)

 Print *, all(a>=5 .and. a<10)

end program arrayReduction

When the above code is compiled and executed, it produces the following result:

F

T

Fortran

87

5

F

Example
The following example demonstrates the concept:

program arrayReduction

implicit none

 real, dimension(1:6) :: a = (/ 21.0, 12.0,33.0, 24.0, 15.0, 16.0 /)

 Print *, maxval(a)

 Print *, minval(a)

 Print *, sum(a)

 Print *, product(a)

end program arrayReduction

When the above code is compiled and executed, it produces the following result:

33.0000000

12.0000000

121.000000

47900160.0

Inquiry
The following table describes the inquiry functions:

Function Description

allocated(array) It is a logical function which indicates if the array is allocated.

lbound(array, dim) It returns the lower dimension limit for the array. If dim (the
dimension) is not given as an argument, you get an integer
vector, if dim is included, you get the integer value with exactly
that lower dimension limit, for which you asked.

Fortran

88

shape(source) It returns the shape of an array source as an integer vector.

size(array, dim) It returns the number of elements in an array. If dim is not
given, and the number of elements in the relevant dimension if
dim is included.

ubound(array, dim) It returns the upper dimensional limits.

Example
The following example demonstrates the concept:

program arrayInquiry

 real, dimension(3,2) :: a

 a = reshape((/5,9,6,10,8,12/), (/3,2/))

 Print *, lbound(a, dim=1)

 Print *, ubound(a, dim=1)

 Print *, shape(a)

 Print *, size(a,dim=1)

end program arrayInquiry

When the above code is compiled and executed, it produces the following result:

1

3

3 2

3

Construction
The following table describes the construction functions:

Fortran

89

Function Description

merge(tsource, fsource, mask)

This function joins two arrays. It gives the elements
in tsource if the condition in mask is .true. and
fsource if the condition in mask is .false. The two
fields tsource and fsource have to be of the same
type and the same shape. The result also is of this
type and shape. Also mask must have the same
shape.

pack(array, mask, vector)

It packs an array to a vector with the control of
mask. The shape of the logical array mask, has to
agree with the one for array, or else mask must be a
scalar. If vector is included, it has to be an array of
rank 1 (i.e. a vector) with at least as many elements
as those that are true in mask, and have the same
type as array. If mask is a scalar with the
value .true. then vector instead must have the same
number of elements as array.

spread(source, dim, ncopies)

It returns an array of the same type as the
argument source with the rank increased by one.
The parameters dim and ncopies are integer. if
ncopies is negative the value zero is used instead. If
source is a scalar, then spread becomes a vector
with ncopies elements that all have the same value
as source. The parameter dim indicates which index
is to be extended. it has to be within the range 1 and
1+(rank of source), if source is a scalar then dim has
to be one. The parameter ncopies is the number of
elements in the new dimensions.

unpack(vector, mask, array)

It scatters a vector to an array under control of
mask. The shape of the logical array mask has to
agree with the one for array. The array vector has to
have the rank 1 (i.e. it is a vector) with at least as
many elements as those that are true in mask, and
also has to have the same type as array. If array is
given as a scalar then it is considered to be an array
with the same shape as mask and the same scalar
elements everywhere.

The result will be an array with the same shape as
mask and the same type as vector. The values will
be those from vector that are accepted, while in the

Fortran

90

remaining positions in array the old values are kept.

Example
The following example demonstrates the concept:

program arrayConstruction

implicit none

 interface

subroutine write_array (a)

 real :: a(:,:)

end subroutine write_array

subroutine write_l_array (a)

 logical :: a(:,:)

end subroutine write_l_array

 end interface

 real, dimension(2,3) :: tsource, fsource, result

 logical, dimension(2,3) :: mask

 tsource = reshape((/ 35, 23, 18, 28, 26, 39 /), &

 (/ 2, 3 /))

 fsource = reshape((/ -35, -23, -18, -28, -26, -39 /), &

 (/ 2,3 /))

 mask = reshape((/ .true., .false., .false., .true., &

 .false., .false. /), (/ 2,3 /))

 result = merge(tsource, fsource, mask)

 call write_array(tsource)

 call write_array(fsource)

 call write_l_array(mask)

 call write_array(result)

end program arrayConstruction

subroutine write_array (a)

 real :: a(:,:)

 do i = lbound(a,1), ubound(a,1)

Fortran

91

write(*,*) (a(i, j), j = lbound(a,2), ubound(a,2))

 end do

 return

end subroutine write_array

subroutine write_l_array (a)

 logical :: a(:,:)

 do i = lbound(a,1), ubound(a,1)

write(*,*) (a(i, j), j= lbound(a,2), ubound(a,2))

 end do

 return

end subroutine write_l_array

When the above code is compiled and executed, it produces the following result:

35.0000000 18.0000000 26.0000000

23.0000000 28.0000000 39.0000000

-35.0000000 -18.0000000 -26.0000000

-23.0000000 -28.0000000 -39.0000000

T F F

F T F

35.0000000 -18.0000000 -26.0000000

-23.0000000 28.0000000 -39.0000000

Reshape
The following table describes the reshape function:

Function Description

reshape(source, shape, pad, order)

It constructs an array with a specified shape
shape starting from the elements in a given
array source. If pad is not included then the size
of source has to be at least product (shape). If
pad is included, it has to have the same type as
source. If order is included, it has to be an
integer array with the same shape as shape and

Fortran

92

the values must be a permutation of
(1,2,3,...,n), where n is the number of elements
in shape , it has to be less than, or equal to 7.

Example
The following example demonstrates the concept:

program arrayReshape

implicit none

interface

 subroutine write_matrix(a)

 real, dimension(:,:) :: a

 end subroutine write_matrix

 end interface

 real, dimension (1:9) :: b = (/ 21, 22, 23, 24, 25, 26, 27, 28, 29 /)

 real, dimension (1:3, 1:3) :: c, d, e

 real, dimension (1:4, 1:4) :: f, g, h

 integer, dimension (1:2) :: order1 = (/ 1, 2 /)

 integer, dimension (1:2) :: order2 = (/ 2, 1 /)

 real, dimension (1:16) :: pad1 = (/ -1, -2, -3, -4, -5, -6, -7, -8, &

 & -9, -10, -11, -12, -13, -14, -15, -16 /)

 c = reshape(b, (/ 3, 3 /))

 call write_matrix(c)

 d = reshape(b, (/ 3, 3 /), order = order1)

 call write_matrix(d)

 e = reshape(b, (/ 3, 3 /), order = order2)

 call write_matrix(e)

 f = reshape(b, (/ 4, 4 /), pad = pad1)

 call write_matrix(f)

Fortran

93

 g = reshape(b, (/ 4, 4 /), pad = pad1, order = order1)

 call write_matrix(g)

 h = reshape(b, (/ 4, 4 /), pad = pad1, order = order2)

 call write_matrix(h)

end program arrayReshape

subroutine write_matrix(a)

 real, dimension(:,:) :: a

 write(*,*)

 do i = lbound(a,1), ubound(a,1)

write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

end subroutine write_matrix

When the above code is compiled and executed, it produces the following result:

21.0000000 24.0000000 27.0000000

22.0000000 25.0000000 28.0000000

23.0000000 26.0000000 29.0000000

21.0000000 24.0000000 27.0000000

22.0000000 25.0000000 28.0000000

23.0000000 26.0000000 29.0000000

21.0000000 22.0000000 23.0000000

24.0000000 25.0000000 26.0000000

27.0000000 28.0000000 29.0000000

21.0000000 25.0000000 29.0000000 -4.00000000

22.0000000 26.0000000 -1.00000000 -5.00000000

23.0000000 27.0000000 -2.00000000 -6.00000000

24.0000000 28.0000000 -3.00000000 -7.00000000

Fortran

94

21.0000000 25.0000000 29.0000000 -4.00000000

22.0000000 26.0000000 -1.00000000 -5.00000000

23.0000000 27.0000000 -2.00000000 -6.00000000

24.0000000 28.0000000 -3.00000000 -7.00000000

21.0000000 22.0000000 23.0000000 24.0000000

25.0000000 26.0000000 27.0000000 28.0000000

29.0000000 -1.00000000 -2.00000000 -3.00000000

-4.00000000 -5.00000000 -6.00000000 -7.00000000

Manipulation
Manipulation functions are shift functions. The shift functions return the shape of an
array unchanged, but move the elements.

Function Description

cshift(array, shift, dim)

It performs circular shift by shift positions to
the left, if shift is positive and to the right if it is
negative. If array is a vector the shift is being
done in a natural way, if it is an array of a
higher rank then the shift is in all sections along
the dimension dim.

If dim is missing it is considered to be 1, in
other cases it has to be a scalar integer number
between 1 and n (where n equals the rank of
array). The argument shift is a scalar integer or
an integer array of rank n-1 and the same
shape as the array, except along the dimension
dim (which is removed because of the lower
rank). Different sections can therefore be
shifted in various directions and with various
numbers of positions.

eoshift(array, shift, boundary, dim)

It is end-off shift. It performs shift to the left if
shift is positive and to the right if it is negative.
Instead of the elements shifted out new
elements are taken from boundary.

If array is a vector the shift is being done in a

Fortran

95

natural way, if it is an array of a higher rank,
the shift on all sections is along the dimension
dim. if dim is missing, it is considered to be 1,
in other cases it has to have a scalar integer
value between 1 and n (where n equals the
rank of array).

The argument shift is a scalar integer if array
has rank 1, in the other case it can be a scalar
integer or an integer array of rank n-1 and with
the same shape as the array array except along
the dimension dim (which is removed because
of the lower rank).

transpose (matrix)
It transposes a matrix, which is an array of rank
2. It replaces the rows and columns in the
matrix.

Example
The following example demonstrates the concept:

program arrayShift

implicit none

 real, dimension(1:6) :: a = (/ 21.0, 22.0, 23.0, 24.0, 25.0, 26.0 /)

 real, dimension(1:6) :: x, y

 write(*,10) a

 x = cshift (a, shift = 2)

 write(*,10) x

 y = cshift (a, shift = -2)

 write(*,10) y

 x = eoshift (a, shift = 2)

 write(*,10) x

 y = eoshift (a, shift = -2)

 write(*,10) y

Fortran

96

 10 format(1x,6f6.1)

end program arrayShift

When the above code is compiled and executed, it produces the following result:

21.0 22.0 23.0 24.0 25.0 26.0

23.0 24.0 25.0 26.0 21.0 22.0

25.0 26.0 21.0 22.0 23.0 24.0

23.0 24.0 25.0 26.0 0.0 0.0

0.0 0.0 21.0 22.0 23.0 24.0

Example
The following example demonstrates transpose of a matrix:

program matrixTranspose

implicit none

 interface

subroutine write_matrix(a)

 integer, dimension(:,:) :: a

end subroutine write_matrix

 end interface

 integer, dimension(3,3) :: a, b

 integer :: i, j

 do i = 1, 3

do j = 1, 3

 a(i, j) = i

end do

 end do

 print *, 'Matrix Transpose: A Matrix'

 call write_matrix(a)

 b = transpose(a)

Fortran

97

 print *, 'Transposed Matrix:'

 call write_matrix(b)

end program matrixTranspose

subroutine write_matrix(a)

 integer, dimension(:,:) :: a

 write(*,*)

 do i = lbound(a,1), ubound(a,1)

write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

end subroutine write_matrix

When the above code is compiled and executed, it produces the following result:

Matrix Transpose: A Matrix

1 1 1

2 2 2

3 3 3

Transposed Matrix:

1 2 3

1 2 3

1 2 3

Location
The following table describes the location functions:

Function Description

maxloc(array, mask)

It returns the position of the greatest element in the array
array, if mask is included only for those which fulfil the
conditions in mask, position is returned and the result is an
integer vector.

Fortran

98

minloc(array, mask)

It returns the position of the smallest element in the array
array, if mask is included only for those which fulfil the
conditions in mask, position is returned and the result is an
integer vector.

Example
The following example demonstrates the concept:

program arrayLocation

implicit none

 real, dimension(1:6) :: a = (/ 21.0, 12.0,33.0, 24.0, 15.0, 16.0 /)

 Print *, maxloc(a)

 Print *, minloc(a)

end program arrayLocation

When the above code is compiled and executed, it produces the following result:

3

2

Fortran

99

A dynamic array is an array, the size of which is not known at compile time, but will be
known at execution time.

Dynamic arrays are declared with the attribute allocatable.

For example,

real, dimension (:,:), allocatable :: darray

The rank of the array, i.e., the dimensions has to be mentioned however, to allocate
memory to such an array, you use the allocate function.

allocate (darray(s1,s2))

After the array is used, in the program, the memory created should be freed using
thedeallocate function

deallocate (darray)

Example
The following example demonstrates the concepts discussed above.

program dynamic_array

implicit none

!rank is 2, but size not known

 real, dimension (:,:), allocatable :: darray

 integer :: s1, s2

 integer :: i, j

 print*, "Enter the size of the array:"

 read*, s1, s2

! allocate memory

 allocate (darray(s1,s2))

 do i = 1, s1

do j = 1, s2

 darray(i,j) = i*j

14. Fortran ─ Dynamic Arrays

Fortran

100

 print*, "darray(",i,",",j,") = ", darray(i,j)

end do

 end do

 deallocate (darray)

end program dynamic_array

When the above code is compiled and executed, it produces the following result:

Enter the size of the array: 3,4

darray(1 , 1) = 1.00000000

darray(1 , 2) = 2.00000000

darray(1 , 3) = 3.00000000

darray(1 , 4) = 4.00000000

darray(2 , 1) = 2.00000000

darray(2 , 2) = 4.00000000

darray(2 , 3) = 6.00000000

darray(2 , 4) = 8.00000000

darray(3 , 1) = 3.00000000

darray(3 , 2) = 6.00000000

darray(3 , 3) = 9.00000000

darray(3 , 4) = 12.0000000

Use of Data Statement
The data statement can be used for initialising more than one array, or for array section
initialisation.

The syntax of data statement is:

data variable / list / ...

Example
The following example demonstrates the concept:

program dataStatement

implicit none

 integer :: a(5), b(3,3), c(10),i, j

Fortran

101

 data a /7,8,9,10,11/

 data b(1,:) /1,1,1/

 data b(2,:)/2,2,2/

 data b(3,:)/3,3,3/

 data (c(i),i=1,10,2) /4,5,6,7,8/

 data (c(i),i=2,10,2)/5*2/

 Print *, 'The A array:'

 do j = 1, 5

print*, a(j)

 end do

 Print *, 'The B array:'

 do i = lbound(b,1), ubound(b,1)

write(*,*) (b(i,j), j = lbound(b,2), ubound(b,2))

 end do

 Print *, 'The C array:'

 do j = 1, 10

print*, c(j)

 end do

end program dataStatement

When the above code is compiled and executed, it produces the following result:

The A array:

7

8

9

10

11

The B array:

1 1 1

2 2 2

3 3 3

Fortran

102

The C array:

4

2

5

2

6

2

7

2

8

2

Use of Where Statement
The where statement allows you to use some elements of an array in an expression,
depending on the outcome of some logical condition. It allows the execution of the
expression, on an element, if the given condition is true.

Example
The following example demonstrates the concept:

program whereStatement

implicit none

 integer :: a(3,5), i , j

 do i = 1,3

do j = 1, 5

 a(i,j) = j-i

end do

 end do

 Print *, 'The A array:'

 do i = lbound(a,1), ubound(a,1)

write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

Fortran

103

 where(a<0)

a = 1

 elsewhere

a = 5

 end where

 Print *, 'The A array:'

 do i = lbound(a,1), ubound(a,1)

write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

end program whereStatement

When the above code is compiled and executed, it produces the following result:

The A array:

0 1 2 3 4

-1 0 1 2 3

-2 -1 0 1 2

The A array:

5 5 5 5 5

1 5 5 5 5

1 1 5 5 5

