
Fortran

39

There may be a situation, when you need to execute a block of code several number of
times. In general, statements are executed sequentially : The first statement in a
function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and following is the general form of a loop statement in most of the programming
languages:

Fortran provides the following types of loop constructs to handle looping requirements.
Click the following links to check their detail.

Loop Type Description

do loop This construct enables a statement, or a series of statements, to be
carried out iteratively, while a given condition is true.

do while loop Repeats a statement or group of statements while a given condition is
true. It tests the condition before executing the loop body.

nested loops You can use one or more loop construct inside any other loop
construct.

9. Fortran ─ Loops

Fortran

40

do Loop
The do loop construct enables a statement, or a series of statements, to be carried out
iteratively, while a given condition is true.

Syntax
The general form of the do loop is:

do var = start, stop [,step]

! statement(s)

 …

end do

Where,

the loop variable var should be an integer

start is initial value

stop is the final value

step is the increment, if this is omitted, then the variable var is increased by
unity

For example:

! compute factorials

do n = 1, 10

 nfact = nfact * n

! printing the value of n and its factorial

 print*, n, " ", nfact

end do

Flow Diagram
Here is the flow of control for the do loop construct:

The initial step is executed first, and only once. This step allows you to declare
and initialize any loop control variables. In our case, the variable var is initialised
with the value start.

Next, the condition is evaluated. If it is true, the body of the loop is executed. If it
is false, the body of the loop does not execute and flow of control jumps to the
next statement just after the loop. In our case, the condition is that the variable
var reaches its final value stop.

Fortran

41

After the body of the loop executes, the flow of control jumps back up to the
increment statement. This statement allows you to update the loop control
variable var.

The condition is now evaluated again. If it is true, the loop executes and the
process repeats itself (body of loop, then increment step, and then again
condition). After the condition becomes false, the loop terminates.

Example 1
This example prints the numbers 11 to 20:

program printNum

implicit none

! define variables

 integer :: n

 do n = 11, 20

! printing the value of n

Fortran

42

print*, n

 end do

end program printNum

When the above code is compiled and executed, it produces the following result:

11

12

13

14

15

16

17

18

19

20

Example 2
This program calculates the factorials of numbers 1 to 10:

program factorial

implicit none

! define variables

 integer :: nfact = 1

 integer :: n

! compute factorials

 do n = 1, 10

nfact = nfact * n

! print values

print*, n, " ", nfact

 end do

end program factorial

Fortran

43

When the above code is compiled and executed, it produces the following result:

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

do-while Loop
It repeats a statement or a group of statements while a given condition is true. It tests
the condition before executing the loop body.

Syntax

do while (logical expr)

 statements

end do

Flow Diagram

Fortran

44

Example

program factorial

implicit none

! define variables

 integer :: nfact = 1

 integer :: n = 1

! compute factorials

 do while (n <= 10)

nfact = nfact * n

n = n + 1

print*, n, " ", nfact

 end do

end program factorial

When the above code is compiled and executed, it produces the following result:

2 1

3 2

4 6

5 24

6 120

7 720

8 5040

9 40320

10 362880

11 3628800

Fortran

45

Nested Loops
You can use one or more loop construct inside any another loop construct. You can also
put labels on loops.

Syntax

iloop: do i = 1, 3

 print*, "i: ", i

jloop: do j = 1, 3

print*, "j: ", j

kloop: do k = 1, 3

 print*, "k: ", k

end do kloop

 end do jloop

end do iloop

Example

program nestedLoop

implicit none

 integer:: i, j, k

 iloop: do i = 1, 3

jloop: do j = 1, 3

 kloop: do k = 1, 3

 print*, "(i, j, k): ", i, j, k

 end do kloop

end do jloop

 end do iloop

end program nestedLoop

Fortran

46

When the above code is compiled and executed, it produces the following result:

(i, j, k): 1 1 1

(i, j, k): 1 1 2

(i, j, k): 1 1 3

(i, j, k): 1 2 1

(i, j, k): 1 2 2

(i, j, k): 1 2 3

(i, j, k): 1 3 1

(i, j, k): 1 3 2

(i, j, k): 1 3 3

(i, j, k): 2 1 1

(i, j, k): 2 1 2

(i, j, k): 2 1 3

(i, j, k): 2 2 1

(i, j, k): 2 2 2

(i, j, k): 2 2 3

(i, j, k): 2 3 1

(i, j, k): 2 3 2

(i, j, k): 2 3 3

(i, j, k): 3 1 1

(i, j, k): 3 1 2

(i, j, k): 3 1 3

(i, j, k): 3 2 1

(i, j, k): 3 2 2

Loop Control Statements
Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed.

Fortran supports the following control statements. Click the following links to check their
detail.

Control
Statement

Description

exit If the exit statement is executed, the loop is exited, and the
execution of the program continues at the first executable statement

Fortran

47

after the end do statement.

cycle If a cycle statement is executed, the program continues at the start
of the next iteration.

stop If you wish execution of your program to stop, you can insert a stop
statement

Exit Statement
Exit statement terminates the loop or select case statement, and transfers execution to
the statement immediately following the loop or select.

Flow Diagram

Example

program nestedLoop

implicit none

integer:: i, j, k

 iloop: do i = 1, 3

jloop: do j = 1, 3

 kloop: do k = 1, 3

 print*, "(i, j, k): ", i, j, k

Fortran

48

 if (k==2) then

 exit jloop

 end if

 end do kloop

end do jloop

 end do iloop

end program nestedLoop

When the above code is compiled and executed, it produces the following result:

(i, j, k): 1 1 1

(i, j, k): 1 1 2

(i, j, k): 2 1 1

(i, j, k): 2 1 2

(i, j, k): 3 1 1

(i, j, k): 3 1 2

Cycle Statement
The cycle statement causes the loop to skip the remainder of its body, and immediately
retest its condition prior to reiterating.

Flow diagram

Example

Fortran

49

program cycle_example

implicit none

 integer :: i

 do i = 1, 20

if (i == 5) then

 cycle

end if

 print*, i

 end do

end program cycle_example

When the above code is compiled and executed, it produces the following result:

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fortran

50

Stop Statement
If you wish execution of your program to cease, you can insert a stop statement.

Example

program stop_example

implicit none

 integer :: i

 do i = 1, 20

if (i == 5) then

 stop

end if

print*, i

 end do

end program stop_example

When the above code is compiled and executed, it produces the following result:

1

2

3

4

Fortran

51

Numbers in Fortran are represented by three intrinsic data types:

Integer type

Real type

Complex type

Integer Type
The integer types can hold only integer values. The following example extracts the
largest value that could be hold in a usual four byte integer:

program testingInt

implicit none

 integer :: largeval

 print *, huge(largeval)

end program testingInt

When you compile and execute the above program it produces the following result:

2147483647

Please note that the huge() function gives the largest number that can be held by the
specific integer data type. You can also specify the number of bytes using
the kind specifier. The following example demonstrates this:

program testingInt

implicit none

!two byte integer

 integer(kind=2) :: shortval

!four byte integer

 integer(kind=4) :: longval

!eight byte integer

 integer(kind=8) :: verylongval

10. Fortran ─ Numbers

Fortran

52

!sixteen byte integer

 integer(kind=16) :: veryverylongval

!default integer

 integer :: defval

 print *, huge(shortval)

 print *, huge(longval)

 print *, huge(verylongval)

 print *, huge(veryverylongval)

 print *, huge(defval)

end program testingInt

When you compile and execute the above program it produces the following result:

32767

2147483647

9223372036854775807

170141183460469231731687303715884105727

2147483647

Real Type
It stores the floating point numbers, such as 2.0, 3.1415, -100.876, etc.

Traditionally there were two different real types : the default real type and double
precision type.

However, Fortran 90/95 provides more control over the precision of real and integer
data types through the kind specifier, which we will study shortly.

The following example shows the use of real data type:

program division

implicit none

! Define real variables

 real :: p, q, realRes

Fortran

53

! Define integer variables

 integer :: i, j, intRes

! Assigning values

 p = 2.0

 q = 3.0

 i = 2

 j = 3

! floating point division

 realRes = p/q

 intRes = i/j

 print *, realRes

 print *, intRes

end program division

When you compile and execute the above program it produces the following result:

0.666666687

0

Complex Type
This is used for storing complex numbers. A complex number has two parts : the real
part and the imaginary part. Two consecutive numeric storage units store these two
parts.

For example, the complex number (3.0, -5.0) is equal to 3.0 – 5.0i

The generic function cmplx() creates a complex number. It produces a result who’s real
and imaginary parts are single precision, irrespective of the type of the input arguments.

program createComplex

implicit none

 integer :: i = 10

 real :: x = 5.17

 print *, cmplx(i, x)

end program createComplex

Fortran

54

When you compile and execute the above program, it produces the following result:

(10.0000000, 5.17000008)

The following program demonstrates complex number arithmetic:

program ComplexArithmatic

implicit none

 complex, parameter :: i = (0, 1) ! sqrt(-1)

 complex :: x, y, z

 x = (7, 8);

 y = (5, -7)

 write(*,*) i * x * y

 z = x + y

 print *, "z = x + y = ", z

 z = x - y

 print *, "z = x - y = ", z

 z = x * y

 print *, "z = x * y = ", z

 z = x / y

 print *, "z = x / y = ", z

end program ComplexArithmatic

When you compile and execute the above program it produces the following result:

(9.00000000, 91.0000000)

z = x + y = (12.0000000, 1.00000000)

z = x - y = (2.00000000, 15.0000000)

z = x * y = (91.0000000, -9.00000000)

z = x / y = (-0.283783793, 1.20270276)

Fortran

55

The Range, Precision,and Size of Numbers
The range on integer numbers, the precision and the size of floating point numbers
depends on the number of bits allocated to the specific data type.

The following table displays the number of bits and range for integers:

Number
of bits

Maximum value Reason

64 9,223,372,036,854,774,807 (2**63)–1

32 2,147,483,647 (2**31)–1

The following table displays the number of bits, smallest and largest value, and the
precision for real numbers.

Number
of bits

Largest value Smallest value Precision

64 0.8E+308 0.5E–308 15–18

32 1.7E+38 0.3E–38 6-9

The following examples demonstrate this:

program rangePrecision

implicit none

 real:: x, y, z

 x = 1.5e+40

 y = 3.73e+40

 z = x * y

 print *, z

end program rangePrecision

Fortran

56

When you compile and execute the above program it produces the following result:

x = 1.5e+40

 1

Error : Real constant overflows its kind at (1)

main.f95:5.12:

y = 3.73e+40

 1

Error : Real constant overflows its kind at (1)

Now let us use a smaller number:

program rangePrecision

implicit none

 real:: x, y, z

 x = 1.5e+20

 y = 3.73e+20

 z = x * y

 print *, z

 z = x/y

 print *, z

end program rangePrecision

When you compile and execute the above program it produces the following result:

Infinity

0.402144760

Now let’s watch underflow:

program rangePrecision

implicit none

 real:: x, y, z

 x = 1.5e-30

 y = 3.73e-60

Fortran

57

 z = x * y

 print *, z

 z = x/y

 print *, z

end program rangePrecision

When you compile and execute the above program, it produces the following result:

y = 3.73e-60

 1

Warning : Real constant underflows its kind at (1)

Executing the program....

$demo

0.00000000E+00

Infinity

The Kind Specifier
In scientific programming, one often needs to know the range and precision of data of
the hardware platform on which the work is being done.

The intrinsic function kind() allows you to query the details of the hardware’s data
representations before running a program.

program kindCheck

implicit none

 integer :: i

 real :: r

 complex :: cp

 print *,' Integer ', kind(i)

 print *,' Real ', kind(r)

 print *,' Complex ', kind(cp)

end program kindCheck

When you compile and execute the above program, it produces the following result:

Fortran

58

Integer 4

Real 4

Complex 4

You can also check the kind of all data types:

program checkKind

implicit none

 integer :: i

 real :: r

 character*1 :: c

 logical :: lg

 complex :: cp

 print *,' Integer ', kind(i)

 print *,' Real ', kind(r)

 print *,' Complex ', kind(cp)

 print *,' Character ', kind(c)

 print *,' Logical ', kind(lg)

end program checkKind

When you compile and execute the above program it produces the following result:

Integer 4

Real 4

Complex 4

Character 1

Logical 4

