
Fortran 

12 

A variable is nothing but a name given to a storage area that our programs can 
manipulate. Each variable should have a specific type, which determines the size and 
layout of the variable's memory; the range of values that can be stored within that 
memory; and the set of operations that can be applied to the variable. 

The name of a variable can be composed of letters, digits, and the underscore character. 
A name in Fortran must follow the following rules: 

It cannot be longer than 31 characters.

It must be composed of alphanumeric characters (all the letters of the alphabet,
and the digits 0 to 9) and underscores (_).

First character of a name must be a letter.

Names are case-insensitive.

Based on the basic types explained in previous chapter, following are the variable types: 

Type Description 

Integer It can hold only integer values. 

Real It stores the floating point numbers. 

Complex It is used for storing complex numbers. 

Logical It stores logical Boolean values. 

Character It stores characters or strings. 

Variable Declaration
Variables are declared at the beginning of a program (or subprogram) in a type 
declaration statement. 

Syntax for variable declaration is as follows: 

type-specifier :: variable_name 

5. Fortran ─ Variables



Fortran 

13 

For example,

integer :: total   

real :: average  

complex :: cx   

logical :: done  

character(len=80) :: message ! a string of 80 characters 

Later you can assign values to these variables, like, 

total = 20000   

average = 1666.67   

done = .true.   

message = “A big Hello from Tutorials Point” 

cx = (3.0, 5.0) ! cx = 3.0 + 5.0i 

You can also use the intrinsic function cmplx, to assign values to a complex variable: 

cx = cmplx (1.0/2.0, -7.0) ! cx = 0.5 – 7.0i 

cx = cmplx (x, y) ! cx = x + yi 

Example

The following example demonstrates variable declaration, assignment and display on 
screen: 

program variableTesting 

implicit none 

! declaring variables

integer :: total

real :: average

complex :: cx

logical :: done

character(len=80) :: message ! a string of 80 characters

!assigning values

total = 20000

average = 1666.67

done = .true.



Fortran 

14 

   message = "A big Hello from Tutorials Point" 

   cx = (3.0, 5.0) ! cx = 3.0 + 5.0i 

   Print *, total 

   Print *, average 

   Print *, cx 

   Print *, done 

   Print *, message 

end program variableTesting 

When the above code is compiled and executed, it produces the following result: 

20000 

1666.67004   

(3.00000000, 5.00000000 ) 

T 

A big Hello from Tutorials Point   



Fortran 

15 

The constants refer to the fixed values that the program cannot alter during its 
execution. These fixed values are also called literals. 

Constants can be of any of the basic data types like an integer constant, a floating 
constant, a character constant, a complex constant, or a string literal. There are only 
two logical constants : .true. and .false. 

The constants are treated just like regular variables, except that their values cannot be 
modified after their definition. 

Named Constants and Literals
There are two types of constants: 

Literal constants

Named constants

A literal constant have a value, but no name. 

For example, following are the literal constants: 

Type Example 

Integer constants 0 1 -1 300 123456789 

Real constants 0.0 1.0 -1.0 123.456 7.1E+10 -52.715E-30 

Complex constants (0.0, 0.0) (-123.456E+30, 987.654E-29) 

Logical constants .true. .false. 

Character constants "PQR" "a" "123'abc$%#@!" 

" a quote "" " 

'PQR' 'a' '123"abc$%#@!' 

' an apostrophe '' ' 

A named constant has a value as well as a name. 

Named constants should be declared at the beginning of a program or procedure, just 
like a variable type declaration, indicating its name and type. Named constants are 
declared with the parameter attribute. For example, 

6. Fortran ─ Constants



Fortran 

16 

real, parameter :: pi = 3.1415927 

Example

The following program calculates the displacement due to vertical motion under gravity. 

program gravitationalDisp 

! this program calculates vertical motion under gravity

implicit none

! gravitational acceleration

real, parameter :: g = 9.81

! variable declaration

real :: s ! displacement

real :: t ! time

real :: u ! initial speed

! assigning values

t = 5.0

u = 50

! displacement

s = u * t - g * (t**2) / 2

! output

print *, "Time = ", t

print *, 'Displacement = ',s

end program gravitationalDisp 

When the above code is compiled and executed, it produces the following result: 

Time = 5.00000000  

Displacement = 127.374992 



Fortran 

17 

An operator is a symbol that tells the compiler to perform specific mathematical or 
logical manipulations. Fortran provides the following types of operators: 

Arithmetic Operators

Relational Operators

Logical Operators

Let us look at all these types of operators one by one. 

Arithmetic Operators
Following table shows all the arithmetic operators supported by Fortran. Assume 
variable Aholds 5 and variable B holds 3 then: 

Operator Description Example 

+ Addition Operator, adds two operands. A + B will give 8 

- Subtraction Operator, subtracts second operand 
from the first. 

A - B will give 2 

* Multiplication Operator, multiplies both operands. A * B will give 15 

/ Division Operator, divides numerator by de-
numerator. 

A / B will give 1 

** Exponentiation Operator, raises one operand to the 
power of the other. 

A ** B will give 125 

Example
Try the following example to understand all the arithmetic operators available in Fortran: 

program arithmeticOp 

! this program performs arithmetic calculation

implicit none

! variable declaration

7. Fortran ─ Operators



Fortran 

18 

   integer :: a, b, c 

! assigning values

a = 5

b = 3

! Exponentiation

c = a ** b

! output

print *, "c = ", c

! Multiplication

c = a * b

! output

print *, "c = ", c

! Division

c = a / b

! output

print *, "c = ", c

! Addition

c = a + b

! output

print *, "c = ", c

! Subtraction

c = a - b

! output

print *, "c = ", c



Fortran 

19 

end program arithmeticOp 

When you compile and execute the above program, it produces the following result: 

c = 125 

c = 15 

c = 1 

c = 8 

c = 2 

Relational Operators
Following table shows all the relational operators supported by Fortran. Assume 
variable Aholds 10 and variable B holds 20, then: 

Operator Equivalent Description Example 

== .eq. Checks if the values of two operands are 
equal or not, if yes then condition becomes 
true. 

(A == B) is 
not true. 

/= .ne. Checks if the values of two operands are 
equal or not, if values are not equal then 
condition becomes true. 

(A /= B) 
is true. 

> .gt. Checks if the value of left operand is greater 
than the value of right operand, if yes then 
condition becomes true. 

(A > B) is 
not true. 

< .lt. Checks if the value of left operand is less 
than the value of right operand, if yes then 
condition becomes true. 

(A < B) is 
true. 

>= .ge. Checks if the value of left operand is greater 
than or equal to the value of right operand, if 
yes then condition becomes true. 

(A >= B) is 
not true. 

<= .le. Checks if the value of left operand is less 
than or equal to the value of right operand, if 
yes then condition becomes true. 

(A <= B) is 
true. 

Example

greater 
than 

not equal 

equal 

less 
than 

greater 
than or equal to 

less
than or equal 



Fortran 

20 

Try the following example to understand all the logical operators available in Fortran: 

program logicalOp 

! this program checks logical operators

implicit none

! variable declaration

logical :: a, b

! assigning values

a = .true.

b = .false.

   if (a .and. b) then 

print *, "Line 1 - Condition is true" 

   else 

print *, "Line 1 - Condition is false" 

   end if 

   if (a .or. b) then 

print *, "Line 2 - Condition is true" 

   else 

print *, "Line 2 - Condition is false" 

   end if 

! changing values

a = .false.

b = .true.

   if (.not.(a .and. b)) then 

print *, "Line 3 - Condition is true" 

   else 

print *, "Line 3 - Condition is false" 

   end if 

   if (b .neqv. a) then 



Fortran 

21 

print *, "Line 4 - Condition is true" 

   else 

print *, "Line 4 - Condition is false" 

   end if 

   if (b .eqv. a) then 

print *, "Line 5 - Condition is true" 

   else 

print *, "Line 5 - Condition is false" 

   end if 

end program logicalOp 

When you compile and execute the above program it produces the following result: 

Line 1 - Condition is false 

Line 2 - Condition is true 

Line 3 - Condition is true 

Line 4 - Condition is true 

Line 5 - Condition is false 

Logical Operators
Logical operators in Fortran work only on logical values .true. and .false. 

The following table shows all the logical operators supported by Fortran. Assume variable 
A holds .true. and variable B holds .false. , then: 

Operator Description Example 

.and. Called Logical AND operator. If both the 
operands are non-zero, then condition becomes 
true. 

(A .and. B) is false. 

.or. Called Logical OR Operator. If any of the two 
operands is non-zero, then condition becomes 
true. 

(A .or. B) is true. 

.not. Called Logical NOT Operator. Use to reverses the 
logical state of its operand. If a condition is true 
then Logical NOT operator will make false. 

!(A . . B) is true. 

.eqv. Called Logical EQUIVALENT Operator. Used to 
check equivalence of two logical values.  

(A .eqv. B) is false. 



Fortran 

22 

.neqv. Called Logical NON-EQUIVALENT Operator. Used 
to check non-equivalence of two logical values. 

(A .neqv. B) is true. 

Example 

Try the following example to understand all the logical operators available in Fortran: 

program logicalOp 

! this program checks logical operators

implicit none  

! variable declaration

   logical :: a, b 

! assigning values

   a = .true.   

   b = .false.  

   if (a .and. b) then 

print *, "Line 1 - Condition is true" 

   else 

print *, "Line 1 - Condition is false" 

   end if 

    if (a .or. b) then 

print *, "Line 2 - Condition is true" 

   else 

print *, "Line 2 - Condition is false" 

   end if 

! changing values

   a = .false. 

   b = .true.  

   if (.not.(a .and. b)) then 

print *, "Line 3 - Condition is true" 

   else 

print *, "Line 3 - Condition is false" 

   end if 



Fortran 

23 

   if (b .neqv. a) then 

print *, "Line 4 - Condition is true" 

   else 

print *, "Line 4 - Condition is false" 

   end if 

   if (b .eqv. a) then 

print *, "Line 5 - Condition is true" 

   else 

print *, "Line 5 - Condition is false" 

   end if 

end program logicalOp 

When you compile and execute the above program it produces the following result: 

Line 1 - Condition is false 

Line 2 - Condition is true 

Line 3 - Condition is true 

Line 4 - Condition is true 

Line 5 - Condition is false 

Operators Precedence in Fortran
Operator precedence determines the grouping of terms in an expression. This affects 
how an expression is evaluated. Certain operators have higher precedence than others; 
for example, the multiplication operator has higher precedence than the addition 
operator. 

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has 
higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7. 

Here, operators with the highest precedence appear at the top of the table, those with 
the lowest appear at the bottom. Within an expression, higher precedence operators will 
be evaluated first. 

Category Operator Associativity 

Logical NOT and negative sign .not. (-) Left to right 



Fortran 

24 

Exponentiation ** Left to right 

Multiplicative * / Left to right 

Additive + - Left to right 

Relational < <= > >= Left to right 

Equality == != Left to right 

Logical AND .and. Left to right 

Logical OR .or. Left to right 

Assignment = Right to left 

Example
Try the following example to understand the operator precedence in Fortran: 

program precedenceOp 

! this program checks logical operators

implicit none  

! variable declaration

   integer :: a, b, c, d, e 

! assigning values

   a = 20 

   b = 10 

   c = 15 

   d = 5 

   e = (a + b) * c / d      ! ( 30 * 15 ) / 5

   print *, "Value of (a + b) * c / d is :  ",  e 



Fortran 

25 

   e = ((a + b) * c) / d    ! (30 * 15 ) / 5 

   print *, "Value of ((a + b) * c) / d is  : ",  e 

   e = (a + b) * (c / d);   ! (30) * (15/5) 

   print *, "Value of (a + b) * (c / d) is  : ",  e 

   e = a + (b * c) / d;     !  20 + (150/5) 

   print *, "Value of a + (b * c) / d is  :  " ,  e 

end program precedenceOp 

When you compile and execute the above program it produces the following result: 

Value of (a + b) * c / d is : 90 

Value of ((a + b) * c) / d is : 90 

Value of (a + b) * (c / d) is : 90 

Value of a + (b * c) / d is : 50 



Fortran 

26 

Decision making structures require that the programmer specify one or more conditions 
to be evaluated or tested by the program, along with a statement or statements to be 
executed, if the condition is determined to be true, and optionally, other statements to 
be executed if the condition is determined to be false. 

Following is the general form of a typical decision making structure found in most of the 
programming languages: 

Fortran provides the following types of decision making constructs. 

Statement Description 

If… then construct An if… then… end if statement consists of a logical 
expression followed by one or more statements. 

If… then...else construct An if… then statement can be followed by an optional else 
statement, which executes when the logical expression is 
false. 

8. Fortran ─ Decisions



Fortran 

27 

nested if construct You can use one if or else if statement inside 
another if or else if statement(s). 

select case construct A select case statement allows a variable to be tested for 
equality against a list of values. 

nested select case 
construct 

You can use one select case statement inside another select 
case statement(s). 

If…then Construct
An if… then statement consists of a logical expression followed by one or more 
statements and terminated by an end if statement.  

Syntax 

The basic syntax of an if… then statement is: 

if (logical expression) then  

   statement 

end if 

However, you can give a name to the if block, then the syntax of the named if 
statement would be, like:   

[name:] if (logical expression) then     

! various statements

   . . .   

end if [name] 

If the logical expression evaluates to true, then the block of code inside the if…then 
statement will be executed. If logical expression evaluates to false, then the first set of 
code after the end if statement will be executed. 



Fortran 

28 

Flow Diagram

Example 1

program ifProg 

implicit none 

! local variable declaration

   integer :: a = 10 

! check the logical condition using if statement

   if (a < 20 ) then 

! if condition is true then print the following

print*, "a is less than 20" 

   end if 

   print*, "value of a is ", a 

end program ifProg 



Fortran 

29 

When the above code is compiled and executed, it produces the following result: 

a is less than 20 

 value of a is     10 

Example 2
This example demonstrates a named if block: 

program markGradeA 

implicit none   

  real :: marks 

! assign marks

  marks = 90.4 

! use an if statement to give grade

  gr: if (marks > 90.0) then 

  print *, " Grade A" 

  end if gr 

 end program markGradeA 

When the above code is compiled and executed, it produces the following result: 

Grade A 

If… then… else Construct
An if… then statement can be followed by an optional else statement, which executes 
when the logical expression is false. 

Syntax
The basic syntax of an if… then… else statement is: 

if (logical expression) then  

   statement(s) 

else 

   other_statement(s) 

end if 



Fortran 

30 

However, if you give a name to the if block, then the syntax of the named if-else 
statement would be, like:   

[name:] if (logical expression) then     

! various statements

   . . . 

   else 

!other statement(s)

   . . .  

end if [name] 

If the logical expression evaluates to true, then the block of code inside the if…then 
statement will be executed, otherwise the block of code inside the else block will be 
executed. 

Flow Diagram

Example

program ifElseProg 

implicit none 

! local variable declaration

   integer :: a = 100 



Fortran 

31 

! check the logical condition using if statement

   if (a < 20 ) then 

! if condition is true then print the following

print*, "a is less than 20" 

   else 

print*, "a is not less than 20" 

   end if 

   print*, "value of a is ", a 

end program ifElseProg 

When the above code is compiled and executed, it produces the following result: 

a is not less than 20 

value of a is 100 

if...else if...else Statement
An if statement construct can have one or more optional else-if constructs. When 
the ifcondition fails, the immediately followed else-if is executed. When the else-if also 
fails, its successor else-if statement (if any) is executed, and so on. 

The optional else is placed at the end and it is executed when none of the above 
conditions hold true. 

All else statements (else-if and else) are optional.

else-if can be used one or more times

else must always be placed at the end of construct and should appear only once.

Syntax
The syntax of an if...else if...else statement is: 

[name:]  

if (logical expression 1) then 

! block 1

else if (logical expression 2) then

! block 2

else if (logical expression 3) then

! block 3

else    



Fortran 

32 

! block 4

end if [name] 

Example

program ifElseIfElseProg 

implicit none 

! local variable declaration

   integer :: a = 100 

! check the logical condition using if statement

   if( a == 10 ) then 

! if condition is true then print the following

print*, "Value of a is 10" 

   else if( a == 20 ) then 

! if else if condition is true

print*, "Value of a is 20" 

   else if( a == 30 ) then 

! if else if condition is true

print*, "Value of a is 30" 

   else 

! if none of the conditions is true

print*, "None of the values is matching" 

   end if 

   print*, "exact value of a is ", a 

end program ifElseIfElseProg 

When the above code is compiled and executed, it produces the following result: 

None of the values is matching 

exact value of a is 100 



Fortran 

33 

Nested If Construct
You can use one if or else if statement inside another if or else if statement(s). 

Syntax
The syntax for a nested if statement is as follows: 

if ( logical_expression 1) then 

!Executes when the boolean expression 1 is true

   … 

 if(logical_expression 2)then 

! Executes when the boolean expression 2 is true

…

   end if 

end if 

Example

program nestedIfProg 

implicit none 

! local variable declaration

   integer :: a = 100, b= 200 

! check the logical condition using if statement

   if( a == 100 ) then 

! if condition is true then check the following

     if( b == 200 ) then 

! if inner if condition is true

 print*, "Value of a is 100 and b is 200" 

end if 

   end if 

   print*, "exact value of a is ", a 

   print*, "exact value of b is ", b 

end program nestedIfProg 



Fortran 

34 

When the above code is compiled and executed, it produces the following result: 

Value of a is 100 and b is 200 

exact value of a is   100 

exact value of b is   200 

Select Case Construct
A select case statement allows a variable to be tested for equality against a list of 
values. Each value is called a case, and the variable being selected on is checked for 
each select case. 

Syntax
The syntax for the select case construct is as follows: 

[name:] select case (expression) 

case (selector1) 

! some statements

...  case (selector2) 

! other statements

...

case default 

! more statements

...

end select [name] 

The following rules apply to a select statement: 

The logical expression used in a select statement could be logical, character, or
integer (but not real) expression.

You can have any number of case statements within a select. Each case is
followed by the value to be compared to and could be logical, character, or
integer (but not real) expression and determines which statements are executed.

The constant-expression for a case, must be the same data type as the variable
in the select, and it must be a constant or a literal.

When the variable being selected on, is equal to a case, the statements following
that case will execute until the next case statement is reached.

The case default block is executed if the expression in select case (expression)
does not match any of the selectors.



Fortran 

35 

Flow Diagram

Example 1

program selectCaseProg 

implicit none 

! local variable declaration

   character :: grade = 'B' 

   select case (grade) 

   case ('A') 

print*, "Excellent!" 

   case ('B') 



Fortran 

36 

   case ('C') 

print*, "Well done" 

   case ('D') 

print*, "You passed" 

   case ('F') 

print*, "Better try again" 

   case default 

print*, "Invalid grade"  

   end select 

   print*, "Your grade is ", grade 

end program selectCaseProg 

When the above code is compiled and executed, it produces the following result: 

Your grade is B 

Specifying a Range for the Selector
You can specify a range for the selector, by specifying a lower and upper limit separated 
by a colon:   

case (low:high) 

The following example demonstrates this: 

Example 2

program selectCaseProg 

implicit none 

! local variable declaration

   integer :: marks = 78 

   select case (marks) 

   case (91:100) 

print*, "Excellent!" 



Fortran 

37 

   case (81:90) 

print*, "Very good!" 

   case (71:80) 

print*, "Well done!" 

   case (61:70) 

print*, "Not bad!" 

   case (41:60) 

print*, "You passed!" 

   case (:40) 

print*, "Better try again!" 

   case default 

print*, "Invalid marks"  

   end select 

   print*, "Your marks is ", marks 

end program selectCaseProg 

When the above code is compiled and executed, it produces the following result: 

Well done! 

Your marks is   78 

Nested Select Case Construct
You can use one select case statement inside another select case statement(s). 

Syntax

select case(a) 

case (100) 

 print*, "This is part of outer switch", a 

 select case(b)  



Fortran 

38 

    case (200) 

  print*, "This is part of inner switch", a 

 end select 

   end select 

Example

program nestedSelectCase 

! local variable definition

   integer :: a = 100 

   integer :: b = 200 

   select case(a) 

case (100) 

 print*, "This is part of outer switch", a 

 select case(b) 

    case (200) 

  print*, "This is part of inner switch", a 

 end select 

   end select 

   print*, "Exact value of a is : ", a 

   print*, "Exact value of b is : ", b 

end program nestedSelectCase 

When the above code is compiled and executed, it produces the following result: 

This is part of outer switch  100 

This is part of inner switch    100 

Exact value of a is :  100 

Exact value of b is :  200 


